一、选择题。1.已知全集,,,则()A.B.C.D.【答案】D【解析】【分析】求出的定义域化简集合和求出的值域化简集合,由交集的定义可得结果.【详解】∵,,∴,故选D.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.函数的定义域是()A.B.C.D.【答案】A【解析】依题意有,解得.3.下列四个图象中,是函数图象的是()A.(1)B.(1)(3)(4)C.(1)(2)(3)D.(3)(4)【答案】B【解析】试题分析:根据函数的定义,对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,所以(1)(2)不对.考点:函数的概念.4.已知函数满足,则()A.B.C.D.【答案】D【解析】试题分析:根据题意得:①,令可得:②,联立可得,故选择D考点:求函数解析式以及求函数值5.已知函数是定义在上的奇函数.且当时,,则的值为()A.B.C.D.2【答案】B【解析】【分析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论.【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B.【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.6.设a=log32,b=ln2,c=,则()A.a<b<cB.b<c<aC.c<a<bD.c<b<a【答案】C【解析】试题分析根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.考点:对数值大小的比较;换底公式的应用.7.函数的零点所在的区间是()A.B.C.D.【答案】B【解析】【分析】应用函数零点存在性定理判断.【详解】易知函数f(x)=在定义域上连续,且f()=0,f(1)=-10,f(2)=,,根据函数零点存在性定理,可知零点所在区间为,故选B.【点睛】本题考查了函数零点的判定定理的应用,判断函数零点所在区间有三种常用方法,①直接法,解方程判断,②定理法,③图象法.8.设函数,若对任意的都满足成立,则函数可以是()A.B.C.D.不存在这样的函数【答案】B【解析】【分析】分情况讨论,得不等式,进而依次判断即可.【详解】当x为无理数时,f(x)=0,xf(x)≤g(x)⇔0≤g(x),当x为有理数时,f(x)=1,xf(x)≤g(x)⇔x≤g(x),若g(x)=x,当x=-,时g(x)0,即A不正确若g(x)=,已知对任意实数,x≤,且故当x为有理数或无理数时,不等式恒成立,即B正确;若g(x)=x2,当x=,则g()=,,即C不正确;故选B【点睛】本题考查了分段函数、函数恒成立问题,考查了分析问题解决问题的能力.难度一般.9.若函数单调递增,则实数a的取值范围是()A.B.C.D.【答案】D【解析】试题分析:因为函数单调递增,所以且由,所以,解得或,所以实数的取值范围是,故选D.考点:数列的单调性及分段函数的性质.【方法点晴】本题主要考查了分段函数的图象与性质、函数的单调性的应用,不等式的求解等知识点的应用,其中解答中根据哈数是定义域山过的单调递增函数,即可列出不等关系且是解答的关键,即可求求解实数的取值范围,着重考查了学生分析问题和解答问题的能力,属于中档试题.10.已知函数,若,,则()A.B.C.D.与的大小不能确定【答案】A【解析】【分析】判断f(x1)-f(x2)的正负即可【详解】f(x1)-f(x2)=(ax12+2ax1+4)-(ax22+2ax2+4)=a(x1-x2)(x1+x2)+2a(x1-x2)=a(x1-x2)(x1+x2+2)因为a>0,x1<x2,x1+x2=0所以x1-x2<0,x1+x2+2>0所以f(x1)-f(x2)<0即f(x1)<f(x2).故选A【点睛】本题考查了函数值作差法比较大小,作差,判断式子的正负,也是判断函数单调性的一种常用方法.11.已知函数,若互不相同,且满足,则的取值范围是()A.B.C.D.【答案】C【解析】【分析】本题要先画出分段函数的图象,再根据根据分段函数第一个表达式可得出,根据分段函数第二个表达式可得出,这时可将用表示出来,通过求出关于的二次函数在相应区间上的值域即可得到的取值范围.【详解】由题意,可画出函数图象如下:由题意,互不相同,∴可不妨设.∵,由图象,可知.即:.∴,∴.又∵,∴依据图象,它们的函数值只能在0到2之间,∴.根据二次函数的对称性,可知:.∴则可以将看成一个关于的二次函数.由二次函数的知识,可知:在上的值域为.的取值范围即为,故选C.【点睛】本题主要考查分段函数的图象,相等函数值的自变量取值,意在考查数形结合思想的应用,本题是一道较难的中档题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.12.已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为,则A.B.C.D.【答案】C【解析】试题分析:本选择题宜采用特殊值法.取,则,.画出它们的图象,如图所示.从而得出的最小值为两图象右边交点的纵坐标,的最大值为两图象左边交点的纵坐标,再将两函数图象对应的方程组成方程组,求解即得或所以.故选D考点:函数最值的应用.二、填空题。13.若,则的值域是__________.(请用区间表示)【答案】【解析】,函数在上为增函数,而,,函数的值域为.14.已知,求的解析式为___________________.【答案】【解析】令,则,且,故所求的函数15.已知函数分别是定义在上的偶函数和奇函数,且它们在上的图象如图所示,则不等式在上的解集是________.【答案】【解析】【分析】不等式的解集,与f(x)g(x)0且g(x)0的解集相同,观察图象选择函数值同号的部分,再由f(x)是偶函数,g(x)是奇函数,得到f(x)g(x)是奇函数,从而求得对称区间上的部分解集,最后两部分取并集即可.【详解】将不等式转化为f(x)g(x)0且g(x)0,如图所示:满足不等式的解集为:(1,2]∵y=f(x)是偶函数,y=g(x)是奇函数∴f(x)g(x)是奇函数,故在y轴左侧,满足不等式的解集为(-3,-2](-1,0)故不等式在上的解集是(-3,-2](-1,0)(1,2]【点睛】本题考查了函数的奇偶性在解不等式中的应用,考查了数形结合,转化,分类讨论等思想方法,根据函数奇偶性的性质以及数形结合是解决本题的关键.16.设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是________.【答案】【解析】试题分析:由当x≥0时,f(x)=x2,函数是奇函数,可得当x<0时,f(x)=﹣x2,从而f(x)在R上是单调递增函数,且满足2f(x)=f(x),再根据不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,可得x+t≥x在[t,t+2]恒成立,即可得出答案.解:当x≥0时,f(x)=x2∵函数是奇函数∴当x<0时,f(x)=﹣x2∴f(x)=,∴f(x)在R上是单调递增函数,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,∴x+t≥x在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,∴t+2≤(1+)t解得:t≥,故答案为:[,+∞).考点:函数恒成立问题;函数奇偶性的性质.三、解答题。17.计算:(1)(2).【答案】(1)9.6(2)【解析】【分析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现符号错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误.【详解】(1);(2).【点睛】本题主要考查对数的运算、指数幂的运算,属于中档题.指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)18.已知全集,集合,,.(1)求;(2)若,求实数的值.【答案】(1)或或;(2)【解析】【分析】(1)利用一元二次不等式的解法化简集合或,利用指数函数的性质化简,然后进行并集的运算即可;(2)利用补集的定义求出,再根据列方程求解即可.【详解】(1)或,;∴或或;(2);∵;∴;∴.【点睛】本题主要考查了不等式,求集合的交集、并集与补集的混合运算,属于容易题,这类题型尽管比较容易,但是在解题过程中也要注意三点:一要看清楚是求“”还是求“”;二是在求补集与交集时要考虑端点是否可以取到(这是一个易错点);三是在化简集合的过程中要结合不等式的性质与解法.19.已知函数.(1)求,的值;(2)求证:是定值;(3)求的值.【答案】(1)2,2;(2)见证明;(3).【解析】【分析】(1)利用函数的解析式,通过,分别求解,的值;(2)利用函数的解析式化简,即可证明是定值;(3)利用(2)的结论分组,即可求解的值.【详解】(1)函数.时,,.(2)因为,所以.(3).【点睛】本题主要考查函数的解析式以及函数值的求法,考查转化思想以及计算能力,属于中档题.化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将多项和问题转化为两项和问题是解题的关键.20.小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:商店以30元每条的价格销售,平均每日销售量为10条;商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量(条)是售价(元)的一次函数,且各个商店间的售价、销售量等方面不会互相影响.(1)试写出围巾销售每日的毛利润(元)关于售价(元)的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润-总管理、仓储等费用)?【答案】(1);定价为22元或23元(2)25元【解析】【分析】(1)根据题意先求出销售量与售价之间的关系式,再利用毛利润为每日卖出商品的进货价与销售价之间的差价,确定毛利润(元)关于售价(元)的函数关系式,利用二次函数求最值的方法可求;(2)根据总利润=总毛利润-总管理、仓储等费用,构建函数关系,利用基本不等式可求最值.【详解】设,∴,解得,b=70,∴.(1),∵,∴围巾定价为22元或23元时,每日的利润最高.(2)设售价x(元)时总利润为z(元),∴,元,当时,即时,取得等号,∴小张的这批围巾定价为25元时,这批围巾的总利润最高.【点睛】本题以实际问题为载体,考查二次函数模型的构建,考查配方法求最值及基本不等式求最值,关键是函数式的构建.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.21.已知是定义在上的奇函数,且,若,时,有成立.(1)判断在上的单调性,