小学数学等差数列求和专项讲义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1等差数列求和(一)一、知识要点数列:若干个数排成一列称为数列。项:数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。特殊的数列——等差数列:数列中任意相邻两项的差相当公差:等差数列中相邻两项的差称为公差。在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?分析:这个等差数列的首项是3.公差是4,项数是100。要求第100项列表分析找规律:项数12345……n和第一项的差0481216……(n-1)×4每一项的计算33+1×43+2×43+3×43+4×4……3+(n-1)×4总结:通项公式:第n项=首项+(项数-1)×公差所以,第100项=3+(100-1)×4=399.练习1:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。3.求等差数列2.6,10,14……的第100项。2【例题2】有一个数列:4,10,16,22.…,52.这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52.总结例1:要求一列数有多少项,可以先求出末项比首项多的公差的个数,再加1.总结:项数公式:项数=(末项-首项)÷公差+1所以,项数=(52-4)÷6+1=9,即这个数列共有9项。练习2:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。分析:如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。1+2+3+…+99+100=(1+2+3+…+99+100+100+99+98+…+2+1)=(1+100)×100÷2=5050总结发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。练习3:计算下面各题。(1)1+2+3+…+49+503(2)6+7+8+…+74+75(3)100+99+98+…+61+60【例题4】求等差数列2,4,6,…,48,50的和。分析:这个数列是等差数列,我们可以用公式计算。要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2.末项=50,项数=25等差数列的和=(2+50)×25÷2=650.练习4:计算下面各题。(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)分析:容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。4进一步分析还可以发现,这两个数列其实是把1~100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。(2+4+6+…+100)-(1+3+5+…+99)=(2-1)+(4-3)+(6-5)+…+(100-99)=1+1+1+…+1=50练习5:用简便方法计算下面各题。(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+…+2000)-(1+3+5+…+1999)(3)(1+3+5+…+1999)-(2+4+6+…+1998)5等差数列求和(二)一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页?分析:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了?3.有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?6【例题3】某班有51个同学,毕业时每人都和其他的每个人握一次手。那么共握了多少次手?分析:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:50+49+48+…+2+1=(50+1)×50÷2=1275(次).练习3:1.学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。如果有21人参加比赛,一共要进行多少场比赛?2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。那么一共握了多少次手?3.假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?【例题4】求1~99这99个连续自然数的所有数字之和。分析:首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。练习4:1.求1~199这199个连续自然数的所有数字之和。2.求1~999这999个连续自然数的所有数字之和。3.求1~3000这3000个连续自然数的所有数字之和。.【例题5】求1~209这209个连续自然数的全部数字之和。分析:不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为2×10+1+2+…+9=65。所以,1~209这209个连续自然数的全部数字之和1900+65=1965。练习5:1.求1~308连续自然数的全部数字之和。2.求1~2009连续自然数的全部数字之和。3.求连续自然数2000~5000的全部数字之和。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功