铁路信号交流道岔控制电路原理说明全解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

交流道岔控制电路原理说明北京全路通信信号研究设计院有限公司2011.12一.电路构成二.原理介绍三.工程设计一电路构成分类启动电路中1DQJ的3—4线圈部分,由直流道岔控制电路演变而来。1DQJ的1—2线圈不同于直流道岔控制电路直接串接在转辙机电机的动作电路中,而是与其他继电逻辑条件一起构成1DQJ的自闭电路。动作电路是经由AC380供电的三相五线制电路。三相电源通过断相保护器接入电路。表示电路与直流道岔控制电路有较大区别,是表示继电器与二极管电阻并联构成的半波整流电路。多机控制电路是在单机控制电路的基础上组合而来,考虑了错峰启动等因素。二.原理介绍单机控制电路序号代号名称1DCJ定位操纵继电器2FCJ反位操纵继电器31DQJ第一道岔启动继电器42DQJ第二道岔启动继电器51DQJF第一道岔启动复示继电器6BHJ保护继电器7DBJ定位表示继电器8FBJ反位表示继电器9DBQ断相保护器10BB表示变压器以定位操纵为例,联锁发出定位操纵指令后,DCJ吸起、YCJ吸起,1DQJ的3—4线圈通过DCJ的前接点、2DQJ的反位接点和YCJ的前接点得电,随后缓吸(见上图中红色粗线)。1DQJ吸起后,2DQJ的3—4线圈通过DCJ的前接点、1DQJ的前接点得电,随后转极到定位接点闭合(见上图中绿色粗线)。2DQJ定位接点闭合后,1DQJ的3—4线圈电路被切断,为下一次道岔动作做好准备。BHJ在1DQJ的缓放时间内吸起,1DQJ的1—2线圈通过BHJ的前接点构成自闭电路(见上图中黄色粗线)。1DQJ的缓放时间长度与3—4线圈充磁的时间成正比。反位操纵的电路动作过程与定位操纵基本相同,只是检查的继电器接点不同。BHJ的动作原理见后面章节。1DQJ吸起1DQJ得电2DQJ转极BHJ吸起BHJ落下1DQJ落下1DQJF吸起1DQJF落下DCJ落下1DQJF得电定位操纵:1DQJ吸起后,1DQJF随后吸起。A、B、C三相电分别通过红色、绿色、黄色三条粗线(X1、X2、X5)接通电路。第2排接点组随即断开,第1排接点组随即接通,为道岔中途停止转换返回原位置时做好准备。道岔转换完成后,第4排接点组随即断开,第3排接点组随即接通。反位操纵的电路动作过程与定位操纵基本相同,只是接入的控制线和检查的转辙机启动接点不同。对比上面两张图,可以看出通过B相和C相的换相改变交流三相电动机的旋转方向,从而操纵道岔向定位或反位转换。在动作电路中,因2DQJ的第一组和第二组极性极点(即111和121接点组)需切断电流较大的电机电路,所以这两组接点,都要采用带熄弧装置的加强接点。当控制电源有任一相发生断相,就应及时切断其余两相电源,以保护电机不被烧毁。为此设置了断相保护器电路。电路的工作原理:根据电磁感应原理,电流互感器的Ⅰ次侧分别与电路的三个线圈组串联,互感器工作在饱和状态;电流互感器的Ⅱ次侧除基波外,还有高次谐波分量,由于三相电位差为120。,所以基波分量U1=UA1+UB1+UC1=0。三相电源正常供出时,Ⅱ次侧三线圈串联输出的感应交流电压经全波整流并滤波后供出16~22V的直流电压,供给BHJ(JWXC-1700型继电器)使其保持吸起。当三相电源任意一相断电时,其余两相相位差180。,互相抵消,互感器Ⅱ次侧电流矢量为0,继电器落下。此电路能保证道岔无论是启动前断相还是启动后断相,都可以使BHJ可靠地落下,1DQJ落下,切断三相交流电源。对电动机起到了有效的保护作用。转辙机转辙机道岔转换完成后,BHJ落下,1DQJ落下,1DQJF落下,三相电源被切断,通过1DQJ的后接点构成表示电路。表示电路由表示变压器、继电器、电阻、整流二极管和转辙机的各组表示接点组成。表示电路经过了电机的3个线圈,检查了线圈的完整性。假设变压器二次侧4正3负,当正弦交流电源正半波时,DBJ励磁吸起,与DBJ线圈并联的另一条支路,因整流二极管反向截止,故电流基本为零;当正弦交流电源负半波时,在DBJ和整流堆这两条支路中,由于这时整流堆呈正向导通状态,其改支路的阻抗要比DBJ支路阻抗小得多,电流绝大部分经整流堆支路中流过,由于DBJ线圈的感抗足够大,且具有一定的电流迟缓作用,因而DBJ能保持在吸起状态。经半波整流后,用微积分计算出的BD1型表示变压器二次侧电压的平均值(输出直流分量)为0.45U,即0.45*110=49.5V。I=49.5/(1000+1000)=24.75mA。DBJ上的电压为1000*24.75=24.75V。因现场实际还有线圈电阻和电缆电阻,故实际的电流值会小于这个值,DBJ上的电压也会小于这个值。二.原理介绍多机控制电路序号代号名称1QDJ切断继电器2ZBHJ总保护继电器3DKJ道岔动作开始继电器4DWJ道岔动作完成继电器多机牵引的道岔控制电路,其中任一台转辙机不启动时,应切断该道岔的控制电路。为此设置了切断保护电路。切断保护电路由ZBHJ和QDJ组成。道岔开始转换时,各个牵引点的BHJ相继吸起,所有的牵引点的BHJ吸起后,ZBHJ吸起,从第一个开始动作的牵引点的BHJ吸起到ZBHJ吸起的这段时间里,QDJ通过线圈上跨接的RC阻容放电保持吸起,ZBHJ吸起后QDJ通过ZBHJ的前接点继续吸起。经测算RC放电时间在1.7s左右。当道岔其中任意一个牵引点的转辙机不能启动时,其BHJ不能正常吸起,则ZBHJ因励磁电路的KF电无法送出而不能吸起,这时QDJ在缓放时间结束后落下,切断了此组道岔尖轨或心轨所有牵引点的1DQJ电路,此组道岔尖轨或心轨所有转辙机停止转动。这时就需按下故障按钮(故障按钮采用非自复式按钮,并且加铅封),使QDJ重新吸起,由室内外人员共同配合使道岔转动。多机牵引一组道岔时,为使电源屏供电电流错开电机启动峰值,转辙机应按顺序错峰启动。利用1DQJ的缓吸特性,从第二牵引点开始,将上一个牵引点1DQJ的前接点串入本牵引点1DQJ的3—4线圈启动电路中,以完成多机顺序传递启动。错峰启动的时间与1DQJ的缓吸时间相关,经测算为100ms左右。为降低电源屏的输出功率,双动道岔需要满足第一动道岔动作完成后,第二动道岔再动作。为此在切断及保护组合中,设置DKJ、DWJ两个继电器。双动道岔控制电路中,ZBHJ线圈3—4上跨接200uf/50v二极管和51Ω电阻组成的RC电路。当所有转辙机转换到位后,每一牵引点的BHJ依次落下。此时,因RC阻容放电,ZBHJ会缓放落下。避免了在第一牵引点的1DQJ缓放期间,DKJ经于1DQJ的前接点和1ZBHJ的后接点重新吸起。为了确保双动道岔启动时第一动先动作,在第二动1DQJ的励磁电路中的DCJ和FCJ的前接点没有直接接入KF电源,而是接入第一动的2DQJ的接点。这样第一动的DKJ吸起前,第一动的2DQJ接点切断了第二动的1DQJ的励磁电路。在第一动道岔启动电路中,接入了第二动道岔的DKJ和DWJ的后接点。同理,在第二动道岔启动电路中,接入了第一动道岔的DKJ和DWJ的后接点。当第一动开始动作时,尖轨第一机的1DQJ吸起,同时相应的DKJ吸起,切断第二动的起动电路,使第二动不能转换。当第一动全部电机都开始转换时,1ZBHJ(尖轨)和2ZBHJ(心轨)都吸起,DWJ继电器吸起,切断DKJ电路。当第一动全部电机到位后,1ZBHJ(尖轨)和2ZBHJ(心轨)都落下,则DWJ落下,第一动转换完成。当第一动DKJ和DWJ都落下后,第二动启动电路构成,此时,第二动开始转换。三.工程设计道岔控制电路相关图纸工程设计时,是按照转辙机其中的两排单号接点组闭合,两排双号接点组断开为道岔定位进行设计的。若道岔在定位时,转辙机两排双号接点组闭合,两排单号接点组断开,则需要做如下调整配线:1)室外电缆盒至转辙机之间的电缆和电缆盒中的二极管:X2与X3交叉,X4与X5交叉。2)电缆盒中的二极管颠倒极性。3)室内三相电源的B相和C相交叉。以定位到反位的操作为例,对于转辙机定位时单号接点组闭合和转辙机定位时双号接点组闭合,动作杆的运动方向是相反的。因而当转辙机定位时双号接点组闭合时,只有通过380V三相交流电换相,动作杆才能带动道岔尖轨向反位移动。见后两页图示。1.转辙机的技术指标,启动电压大于270V。2.54欧姆的损耗,2A*54欧姆=108V。超过54欧姆时,通过加芯可解决。3.380-108=272V启动电压。4.导线线径计算公式:铜线:S=IL/54.4*U铝线:S=IL/34.4*U式中:I——导线中通过的最大电流(A)L——导线的长度(M)U——允许的电压降(V)S——导线的截面积(mm2)由此可计算出直径1mm2的室外电缆单芯的最大长度:L=S*54.4*U/I=π(1/2)2*54.4*108/2=2300m室内电路根据转辙机类型进行配置。电液转辙机可以带2个SH(锁闭转换器),由锁闭转换器牵引的道岔牵引点就不需要室内电路组合。电液转辙机5线制道岔控制电路中密贴检查器要最后一个SH后。有下拉装置的道岔,道岔控制电路需要和下拉电路结合。

1 / 44
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功