1侧面是曲面底面是圆面圆柱,:侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:侧面都是三角形底面是多边形棱锥锥体,:人教版七年级知识点详细总结七年级上册第一章丰富的图形世界一、几何图形1、从实物中抽象出来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。二、生活中的立体图形1、球体:由球面围成的(球面是曲面)2、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。3、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。三.从不同角度看5、三视图物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。2左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。7、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。弧:圆上A、B两点之间的部分叫做弧。扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。3第二章有理数及其运算一.正数和负数1.正数:大于0的数叫做正数。2.负数:在正数前面加上负号“-”的数叫做负数。3.0既不是正数也不是负数。二.有理数1.有理数:正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。2.有理数的分类正有理数有理数零负有理数或整数有理数分数4、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零5、数轴:规定了原点(在直线上任取一个点表示数0,这个点叫做原点)、正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)和单位长度(选取适当的长度为单位长度)的直线叫做数轴。画数轴时,要注意上述规定的三要素缺一不可。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。6、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。7、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。8、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。4三.有理数的运算1.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。表达式:(a+b)+c=a+(b+c)2.有理数减法法则减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)3.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。表达式:a(b+c)=ab+ac4.倒数除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。5.有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.6.有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。7.有理数的混合运算顺序5(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。8、科学技术法:把一个大于10的数表示成a*10n的形式(其中a是整数数位只有一位的数(即0a10),n是正整数)。9.近似数(approximatenumber):10.有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。四.拓展知识1.数集:把一些数放在一起,就组成一个数的集合,简称数集。(1)所有有理数组成的数集叫做有理数集;(2)所有的整数组成的数集叫做整数集。2.任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。3.根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。4.比较两个有理数大小的方法有:(1)根据有理数在数轴上对应的点的位置直接比较;(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;(3)做差法:a-b0⇔ab;(4)做商法:a/b1,b0⇔ab.6第三章字母表示数一、代数式1、用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫代数式。单独的一个数或一个字母也是代数式。注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、、、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a312应写作a37;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44a;注意:分数线具有“÷”号和括号的双重作用。⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22ba平方米3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。如3x,4y的系数分别为3,4。注意:①单个字母的系数是1,如a的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是14、代数式的项:代数式7262xx表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。二、同类项1、所含字母相同,并且相同字母的指数也相同的项叫做同类项。注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。2、合并同类项:把代数式中的同类项合并成一项,叫做合并同类项。7①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。三、去括号1、根据去括号法则去括号括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。2、根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。3、注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。8第四章平面图形及其位置关系一、线段、射线、直线1、正确理解直线、射线、线段的概念以及它们的区别:名称图形表示方法端点长度直线lBA直线AB(或BA)直线l无端点无法度量射线MO射线OM1个无法度量线段lBA线段AB(或BA)线段l2个可度量长度2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。3、直线性质(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。4、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的中点到两端点的距离相等。(4)线段的大小关系和它们的长度的大小关系是一致的。二、比较线段的长短1.线段公理:两点间线段最短;两点之间线段的长度叫做这两点之间的距离.2.比较线段长短的两种方法①圆规截取比较法;②刻度尺度量比较法.3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍.9三、角的度量与表示1.角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.2.角的表示方法角的符号为“∠”①用三个字母表示,如图1所示∠AOB②用一个字母表示,如图2所示∠b③用一个数字表示,如图3所示∠1④用希腊字母表示,如图4所示∠β3、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”4、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。5、角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:6、一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角..。如图6所示:7终边继续旋转,当它又和始边重合时,所成的角叫做周角..。如图7所示:8从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平...分线..。四、平行与垂直1、经过直线外一点,有且只有一条直线与这条直线平行。2、如果两条直线都与第三条直线平行,那么这两条直线互相平行。3、互相垂直的两条直线的交点叫做垂足..。4、平面内,过一点有且只有一条直线与已知直线垂直。5、如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点.C.到直线...AB..的距离...。AOB图1b图2终边始边图5平角图6周角图7图8CABO1图3β图410第五章一元一次方程一.方程的有关概念1、方程含有未知数的等式叫做方程。2、方程的解能使方程左右两边相等的未知数的值叫做方程的解。3、等式的性质(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。(2)等式的两边同时乘以同