物理与电子工程学院《人工智能》课程设计报告课题名称模糊控制系统的设计与实现专业自动化班级2班学生姓名梁检满学号13006220730指导教师崔明月成绩2014年6月18日模糊控制系统的设计与实现摘要自然界与人类社会有关系的系统绝大部分是模糊系统,这类系统的数学模型不能由经典的物理定律和数学描述来建立。本文在模糊控制理论基础上设计模糊温控系统,利用专家经验建立模糊系统控制规则库,由规则库得到相应的控制决策,并分析系统隶属度函数,利用matlab与simulink结合进行仿真。仿真结果表明,该系统的各项性能指标良好,具有一定的自适应性。模糊控制算法不但简单实用,而且响应速度快,超调量小,控制效果良好。关键词:模糊逻辑;隶属度函数;模糊控制;控制算法1引言在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。随着社会及科技的发展,现代工程实践对系统的控制要求也在不断地提高,但对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,随着人类生产、生活对控制的精细需求,传统的控制理论已渐渐不能满足工艺要求。虽然于是工程师利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了,因此便尝试着以模糊数学来处理这些控制问题。“模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。模糊并非是将这个世界变得模糊,而是让世界进入一个更现实的层次。“模糊”比“清晰”所拥有的信息量更大,内涵更丰富,更符合客观世界。“模糊控制理论”是由美国学者加利福尼亚大学著名教授L.A.Zadeh于1965年首先提出,至今已有50多年的历史。模糊控制是用模糊数学的知识模仿人脑的思维方式,对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制,它是用语言规则描述知识和经验的方法,结合先进的计算机技术,通过模糊推理进行判决的一种高级控制策略。它含有人工智能所包括的推理、学习和联想三大要素;它不是采用纯数学建模的方法,而是将相关专家的知识和思维、学习与推理、联想和决策过程,有计算机来实现辨识和建模并进行控制。因此,它无疑是属于智能控制范畴,而且发展至今已发展成为人工智能领域中的一个重要分支。其理论发展之迅速,应用领域之广泛,控制效果之显著,实为世人关注。在工业生产过程中,温度控制是重要环节,控制精度直接影响系统的运行和产品质量。在传统的温度控制方法中,一般采取双向可控硅装置,并结合简单控制算法(如PID算法),使温度控制实现自动调节。但由于温度控制具有升温单向性、大惯性、大滞后等特点,很难用数学方法建立精确的模型[4]。因此用传统的控制理论和方法很难达到好的控制效果。鉴于此,本文拟以模糊控制为基础的温度智能控制系统,采用人工智能中的模糊控制技术,用模糊控制器代替传统的PID控制器,以闭环控制方式实现对温度的自动控制。2.模糊控制2.1模糊控制的诞生自20世纪60年代以来,传统的自动控制,包括经典理论和现代控制理论已经在工业生产过程、军事科学以及航空航天等许多方面取得了成功的应用,但它们有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程、传递函数或状态方程)的基础上。然而在实际工业生产中,由于一系列原因(例如被控对象和过程的非线性、时变性、多参数间的强烈耦合、较大的随机干扰、过程机理错综复杂以及现场测量仪条件的不足等),建立精确的数学模型特别困难,甚至是不可能的,而通常只能测得其参数间模糊的关系估计。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。1965年美国的伯克利加州大学教授扎德发表了著名的论文《模糊集合论》,提出了模糊性问题,给出了其定量的描述方法,从而模糊数学诞生了。模糊数学不是使数学变得模模糊糊,而是让数学进入模糊现象这个客观的世界,用数学的方法去描述糊涂现象,揭示模糊现象的本质和规律,模糊数学在经典数学和充满模糊的现实世界之间架起了一座桥梁。美国著名的学者教授L.A.Zadeh于1965年首先提出模糊控制理论,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。1974年,英国伦敦大学教授E.H.Mamdani研制成功第一个模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功,这一开拓性的工作标志着模糊控制论的诞生,也充分展示了模糊控制技术的良好应用前景。2.2模糊控制的发展1974年E.H.Mamdani成功对发动机组模糊控制之后,模糊控制如雨后春笋般迅速发展起来,1980年,在丹麦对水泥生成炉进行模糊控制获得成功。最重视模糊控制应用的当属日本,在成功应用模糊控制于仙台地铁以及家用电器之后,1989年4月,在通产省的支持下,成立“国际模糊工程研究所”,作为政府、工业界与高等学校协同合作科研的机构。从1989年开始,投资50亿日元,进行模糊控制产品系列开发,参加的公司企业有48家。1983年,美国加州决策产业公司推出模糊处理的决策支持系统,并在饭店管理和VAX超级小型机管理方面取得成功。1985年开始研究自动导航的模糊控制器,并用飞行模糊控制器做了实验,取得了好的性能。在宇航领域,NASA的约翰逊宇航中心在以控制无人飞行器对接的原型系统中利用了模糊控制器。经过仿真试验表明,利用模糊控制器比利用库里斯普控制规则控制器的性能高出20%以上。目前,模糊控制技术日趋成熟和完善。各种模糊产品充满了日本、西欧和美国市场,如模糊洗衣机、模糊吸尘器和模糊摄像机等等,模糊技术几乎变得无所不能,各国都争先开发模糊新技术和新产品。多年来一直未解决的稳定性分析问题正在逐步解决。模糊芯片也已研制成功且功能不断加强,成本不断下降。直接采用模糊芯片开发产品己成为趋势。模糊开发软件包也充满市场。模糊控制技术除了在硬件、软件上继续发展外,将在自适应模糊控制、混合模糊控制以及神经模糊控制上取得较大发展。随着其它学科新理论、新技术的建立和发展,模糊理论的应用更加广泛。模糊理论结合其它新技术和人工神经网络和遗传基因形成交叉学科神经网络模糊技术(NeuronFuzzyTechnique)和遗传基因模糊技术(GeneticFuzzyTechnique),用于解决单一技术不能解决的问题。模糊理论在其它学科技术的推动下,正朝着更加广泛的方向发展。2.3模糊控制的优势模糊控制能在世界各个国家得到重视发展,在各个科学领域得到长足快速的发展,是因为它有优越于经典控制和现代控制理论的突出特点:(1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。(2)由工业过程的定性认识出发,容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。(3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。(4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。然而,对于模糊控制来说,这些控制问题,便不成为问题。3.模糊控制基本理论3.1模糊控制的基本结构模糊控制是利用模糊数学的基本思想和理论的控制方法发展起来的。传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。一般的模糊控制系统包含以下五个主要部分:(1)定义变量也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差e与输出误差之变化率ec,而控制变量则为下一个状态之输入u。其中e、ec、u统称为模糊变量。(2)模糊化(Fuzzify)将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(Linguisticvalue)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzysubsets)。(3)知识库包括数据库(database)与规则库(rulebase)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。(4)逻辑判断模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。(5)解模糊化(defuzzify)将推论所得到的模糊值转换为明确的控制讯号,作为系统的输入值。3.2模糊数学的基础模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921)教授所创立。他于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生。模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支,它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具[11-13]。模糊数学的研究内容主要有以下三个方面:(1)研究模糊数学的理论,以及它和精确数学、随机数学的关系查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型,并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就能构造出研究现实世界中的大量模糊的数学基础,能够对复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是1,40岁的人肯定不算老人,它的从属程度为0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。(2)研究模糊语言学和模糊逻辑人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能