初中数学课堂教学中提问的效实性.ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1北京市朝阳区教育研究中心王玉起2一、初中数学课堂提问的现状及反思3经过教师精心设计、恰到好处的课堂提问,能有效地激发学生的好奇心和想象力,燃起学生对知识的探究热情,从而极大地提升课堂教学质量.但在目前的日常教学中,教师的课堂提问仍然存在着一些问题,主要有以下几方面:41.提问过多过虚,只重数量忽视质量2.提问脱离学生实际认知水平3.问题缺乏思维空间,学生没有自由思考的余地4.提问注重问题答案,轻视学生反馈5案例1:在探索等腰三角形性质的证明过程中,当有学生提出可以作底边的高,利用三角形全等证明等腰三角形的两个底角相等,并且完成证明后。教师提问:“作等腰三角形顶角的平分线或底边的中线,能否也得到两个全等的三角形呢?”学生异口同声:“能!”6反思:探索等腰三角形性质的证明方法,目的是使学生发现一些常规辅助线的添加方法,初步提高学生构造全等三角形的能力。然而案例中教师的提问,直接告诉了学生两种辅助线的做法,然后只是问学生“行不行”、“能不能”,在这样的提问下,教师越俎代庖,使学生失去了自己主动思考还有哪些辅助线添加方法的宝贵机会,失去了自己独立自主进行创造性思维的空间,最终沦为了机械回答老师问题的“回声筒”。7案例2:《正比例函数的图象与性质》公开课师:学习完正比例函数的概念后,我们下面该研究什么内容?生:(没有任何反应)师:回忆已经学过的知识,你能猜出我们今天的研究内容吗?生:应用正比例函数解决实际问题8师:不对,再猜一猜?生:(面面相觑,有的开始动手翻课本)师:(眼看课堂陷入僵局)还是让老师告诉大家吧,我们今天研究正比例函数的图象与性质!(下面听课的教师开始议论纷纷,学生兴趣索然)9反思:正比例函数是学生遇到的第一个初等基本函数,所以学生对于教材中函数内容体系根本不了解,教师的问题超出了学生的认知水平,学生自然无法回答.同时,初中生对于“研究”一词,感觉很玄虚,高不可攀,因而对问题也产生了畏惧心理,从而造成了启而不发的结果.10案例3:在《直线与圆的位置关系》这节课中,教师为了使学生会在具体问题中判断直线与圆的位置关系,出示了这样一道例题:已知⊙O的半径为3㎝,OP⊥AB于P,OP=5cm,则直线AB与⊙O的位置关系是.出示例题后,教师提问:“半径是多少?圆心距是多少?会比较它们的大小吗?”11反思:案例中教师的提问在两处限制了学生的思维空间:一是在解题方法上没给学生留思考余地。实际上学生既可利用半径与圆心距的数量关系判断,也可由题意画出图形,直接利用直线与圆交点个数判断;12二是在分析问题时没给学生留思考余地。教师直接问学生“半径是多少?圆心距是多少?”,这就使学生不用再思考“从数量关系考虑,判断直线与圆的位置关系需要知道哪些量?条件中这些量是否具备?”等基本问题。13由于教师的提问没给学生创设一定的思维空间,学生学会的只是机械模仿,却没学会分析问题、解决问题的方法。14案例4:《一元一次方程》教学片断:师:如何解方程2x-2=-4(x-1)?生:老师,我还没有开始计算,就已看出来了,x=1!师:光看不行,要按要求算出来才算对.生:先两边同时除以2,再……(被老师打断了)师:你的想法是对的,但以后要注意,刚学新知识时,记住一定要按课本的格式和要求来解,这样才能打好基础.15反思:这位教师提问时,将学生新颖的回答中途打断,只满足单一的标准答案,一味强调机械套用解题的一般步骤和“通法”.而应该呵护学生偶尔闪现的创造性的思维火花.16其实,学生回答即使是错的,教师也要耐心倾听,并给予激励性评析,这样既可以帮助学生纠正错误认识,又可以鼓励学生积极思考问题,激发学生的求异思维,从而培养学生能力.17二、有效数学课堂提问具备的几个条件181.目的明确:有效的问题应该有明确的目标,或为引入新课,或为教学前后联系,或为突破教学难点,或为引起学生争论,或为总结归纳等等.19案例5:为了使学生注意一元二次方程概念中二次项系数不为零的条件师:一元二次方程ax2+bx+c=0中,还要a≠0限制,这多麻烦呀,咱们干脆把着这个条件去掉吧,可以吗?生:不可以.师:为什么?生:如果a=0,ax2+bx+c=0就变为bx+c=0,此时就不是一元二次方程了.师:如果(k-1)x2+x-1=0是关于x的一元二次方程,k的取值范围是多少?20反思:在这个案例中,由于学生初学一元二次方程的概念,所以此时教师的目的和提问符合学生当前教学要求和学生的认知水平.教师如果此时追问:是什么方程?则会冲淡此时的教学主题,影响学生对一元二次方程的概念的掌握.212.富有启发:好的提问能唤醒学生对新旧知识的联系,能激活学生主动思考的兴趣,能点悟学生冲破迷雾的思路,能让学生体验“山穷水尽疑无路,柳暗花明又一村”的快乐.22案例6:初三正多边形教学的引入师:你们知道什么是正多边形么?生:各边都相等的多边形叫正多边形.师:我们学过的菱形是正多边形么?生:不是,哦,还要各角都相等.23反思:学生在小学时对于正多边形已经有了一定的认识,因此引入部分教师采取直接抛出问题的形式,当学生只关注到边需满足的条件时,若教师提问:只有边相等就可以么?这个问题就显得太过直接了,缺少思维量的同时,启发的也太过深入.而教师举了个初二学过的菱形的例子,由学生自己对比发现欠缺的是角的条件,就更加有启发的功能.243.把握三“适”:第一要适度提问应以实际现象和学生现有的知识水平,提出符合学生智能水平难易适度的问题;25第二要适时俗话说“好雨知时节”,提问也是如此,提问的时机要得当.孔子曾说:“不愤不启,不悱不发.”可见,只有当学生具备了“愤、悱”状态,即到了“心求通而未得”,“口欲言而未能”之时,才是对学生进行“开其心”和“达其辞”的最佳时机;26第三要适量精简提问数量,直入重点.一堂课不能问个不停,应当重视提问的密度、节奏及与其他教学方式的结合.27案例7:轴对称教学后的一道习题如图,A和B两地在一条河的两岸,现要在河上造一座桥CD.桥造在何处才能使从A到B的路径ACDB最短?(假定河的两岸是平行的直线,桥要与河垂直.)河AB28师:这道题要解决的是个什么问题?生:(学生在纸上没思路的试着画)AC+CD+DB三条线段和最短.师:观察这三条线段的长度,问题还可以转化的更简单一些么?生:线段CD是定值,所以三条线段和可以转化为AC、DB两条线段和最短.师:非常好,两条线段和最短问题的解决方法是什么?生:使两条线段共线.29师:如何能够使AC、DB共线就成了解决这个问题的关键。CD定长但在AC、BD之间,成了共线的阻碍,我们怎么办?生:把它移一下位置,将B点向上平移河宽CD个长度,标为B’点师:现在就转化为A、B’两点间距离最短问题.生:连接AB’,与河的一边a交点就是所求的点C,过C作垂线,与和另一边b的交点就是所求的点D.师:可以证明吗?生:利用平行四边形的性质就能证明.30反思:距离和最短问题是学生学习过程中的一个难点,但也是综合题常见的组成部分。这个问题将常见的两条线段和最短问题又发展了一下,变形为表面上看是三条线段和最短问题。学生拿到问题的时候顿感无从下手,此时教师适时的提出问题进行引导,先将实际问题转化为数学问题,再通过设问一步步带领学生解决问题。31数学中遇到新问题要拨开表象看本质,往已经学过的知识上转化,教师设计的问题指明了解决问题的思考方向,具体方法留给学生自己探索,也做到了适度和适量。324.新颖多样:提问的高明,在于引发学生兴趣,提问的失误是使学生厌学.教师的提问,内容要新颖别致,方式要新鲜多样,这样就能引起学生强烈的好奇心,激起他们的积极思考,踊跃发言,创造出一种主动求知的情境.33案例8:“找规律”专题教学引入部分师:同学们,请大家观察日历,如果我们知道相邻三个日期数字之和为60,那么这三个日期分别是多少?生:(看到大屏幕上展示的日历,学生们兴趣盎然的互相探究起来,有的学生说出一组答案,大部分学生毫无头绪)34师:想要找出答案,我们一起来看看日历上相邻三个日期之间有什么规律?生:(学生观察日历)上下相邻的都差7.师:非常好,既然存在这样的规律,那么我们可以解决刚才的问题了么?生:我设中间的日期为x,相邻的两个日期就分别是(x+7)和(x-7),把它们加在一起就可以计算出来了.35反思:好奇心人皆有之,强烈的好奇心会增强人们对外界信息的敏感性,激发思维。教师在设计此引入时,充分顾及到这点,从学生熟悉的身边事入手,与直接给出一组数字找规律相比,提问的内容更新颖别致,36这样就能激起他们的积极思考,创造出一种新鲜的能激发学生求知欲望的情境,使学生原有知识经验和接受的信息相互冲突,从而使学生的创造性思维火花得到迸发。375.面向全体:课堂提问的目的是在于调动全体学生积极思维活动,要使全体学生都积极准备回答教师所提出的问题,好的提问不应置大多数学生于不顾,而形成一对一的回答场面,或只向少数几位学生发问.教师提问的机会要平均分配给每一个学生,好让全体学生共同思考,这样能使全班学习质量大面积提高.38案例9:“三角形三边关系”教学中,在学生已经通过动手画图、度量及教师几何画板验证得出三角形三边关系后教师发起“解题接力赛”活动.每组下发一张印好下列题目的纸:39判断下面3条线段能不能构成三角形(单位cm)2,5,33,5,717,20,3911,8,1810,15,2315,20,25305,206,50040师:每组从第一个同学开始每人选作一道题,不可多做不可不做,但可选择做第几题,做完后立刻上交给老师,比一比看哪组做的又快又对.学生上交题目纸,教师带领学生共同探讨题目答案41师:在验证三条线段能否构成三角形时,你是怎么检验的?做得特别快的同学你们有什么好的方法吗?生:计算三个数据中最小两个数据之和,和比最大的数据大就能构成三角形.42反思:这种先实践再归纳简便方法的做法,使得学生能够在理解的基础上灵活运用解决问题。这样,教师在引导学生分析解决问题的过程中,不但经历了解决问题的过程,并使学生的思维过程在课堂上得到充分地展现,从而自主总结出简便方法。436.形成系统:(1)提问要有序:在课堂上,不能随意设问,分散学生对重难点的注意力,而要使所提的一系列问题前后贯通,相互配合.44(2)提问要渐进:提问不能平面化,老是停留在一个层次上,没有层次感和纵深度,不利于推进思考,发展智力.因此提问要按照先易后难、由浅入深的认识规律,形成步步深入的递进系统.45案例10:教学“多边形的内角和”时,教师设计的问题串:1、三角形的内角和是多少度?2、你能求出四边形的内角和吗?3、n边形的内角和是否也可以用上面的方法?试一试.4、你还有其他的方法吗?46反思:通过这些问题的引导,明确了“转化”这一数学思想方法,奠定了进一步学习数学的基础.47(3)提问要有“链”:一节课的提问系统,应是一个有机的整体,提问应围绕中心问题,抓住重点,不要偏离中心.48三、数学课堂提问的基本技巧491.一石激起千层浪---发问于学生的兴趣点好奇之心人皆有之,强烈的好奇心会增强人们对外界信息的敏感性,激发思维.教师设计提问时,要充分顾及学生的兴趣点,使学生出于对知识的饥饿状态,从而产生强烈的学习动机,使学生思维的火花得到迸发.50案例11:速算王的绝招--《平方差公式》的引入师:在一次智力抢答赛中,主持人提供了两道题:21×19=?;103×97=?.主持人话音刚落,就立刻有一个同学刷地站起来抢答说:“第一题等于399,第二题等于9991.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?你想不想掌握他的简便、快速的运算招数呢?51反思:奇异的事物和现象背后往往隐藏着奇妙的数学规律.在案例中,教师利用“速算王”的神奇速算,巧妙设问,使学生对“速算王的绝招”—平方差公式,产生了强烈的探究欲望.522.邻家老枝发新芽----发问于知识的生长点特级教师魏书生说过:知识是“生长”出来的.学生的学习过程是知识不断积累和能力不断提高的过程,新知识的学习是在原有基础上进行的老枝发新芽,学生对新知识的理解是逐步由模糊到清晰、由零碎

1 / 81
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功