洪永淼计量经济学讲义-ch08

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CHAPTER8GENERALIZEDMETHODOFMOMENTSKeywords:CAPM,GMM,Momentmatching,Overidenti…cation,Rationalexpectations.Abstract:Manyeconomictheoriesandhypotheseshaveimplicationsonandonlyonamomentcondition.ApopularmethodtoestimatemodelparameterscontainedinthemomentconditionistheGeneralizedMethodofMoments(GMM).Inthischapter,we…rstprovidesomeeconomicexamplesforthemomentcondition,andde…netheGMMestimator.WethenestablishtheconsistencyandasymptoticnormalityoftheGMMestimator.SincetheasymptoticvarianceofaGMMestimatordependsonthechoiceofaweightingmatrix,weintroduceanasymptoticallyoptimaltwo-stageGMMestimatorwithasuitablechoiceofaweightingmatrix.Withtheconstructionofanasymptoticvarianceestimator,wethenproposeanasymptotically2Waldteststatisticforthehypothesisofinterest,andamodelspeci…cationtestforthemomentcondition.8.1IntroductionontheMethodofMomentsEstimation(MME)Tomotivatethegeneralizedmethodofmoments(GMM)estimation,we…rstconsideratraditionalmethodinstatisticswhichiscalledthemethodofmomentsestimation(MME).Procedures:Supposef(x; 0)istheprobabilitydensityfunction(pdf)ortheprobabilitymassfunction(pmf)ofaunivariaterandomvariableXt.Question:Howtoestimatetheunknownparameter 0usingarealizationoftherandomsamplefXtgnt=1?Answer:ThebasicideaofMMEistomatchthesamplemomentswiththepopulationmomentsobtainedundertheprobabilitydistributionalmodel.Speci…cally,MMEcanbeimplementedasfollows:Step1:ComputepopulationmomentskE(Xkt)underthemodeldensityf(x; 0):Forexample,fork=1;2;wehaveE(Xt)=Z11xf(x; 0)dx=( 0)E(X2t)=Z11x2f(x; 0)dx=2( 0)+2( 0):1Step2:ComputethesamplemomentsfromtherandomsampleXn=(X1;:::;Xn)0:Forexample,fork=1;2;wehave^m1=Xn!p( 0)^m2=n1nXt=1X2t!pE(X2t)=2( 0)+2( 0);wheretheconvergencefollowsbytheWLLN.Step3Matchthesamplemomentswiththecorrespondingpopulationmomentsevaluatedatsomeparametervalue^ :Forexample,fork=1;2;weset^m1=(^ );^m2=2(^ )+2(^ ):Step4:Solveforthesystemofequations.Thesolution^ iscalledthemethodofmomentestimatorfor 0:Remark:Ingeneral,if isaK1vector,weneedKequationsofmatchingmoments.Question:IsMMEconsistentfor 0?Because^mk!pk( 0);weexpectthat^ !p 0asn!1:WenowillustrateMMEbytwosimpleexamples.Example1:SupposetherandomsamplefXtgnt=1i.i.d.EXP():Findanestimatorforusingthemethodofmomentestimation.Solution:Inourapplication, =:Becausetheexponentialpdff(x;)=exforx0;itcanbeshownthat()=E(Xt)=Z10xf(x;)dx=Z10xexdx=1:2Ontheotherhand,the…rstsamplemomentisthesamplemean:^m1=Xn:Matchingthesamplemeanwiththepopulationmeanevaluatedat^:^m1=(^)=1^;weobtainthemethodofmomentestimator^=1^m1=1Xn:Example2:SupposetherandomsamplefXtgnt=1i.i.d.N(;2):FindMMEfor 0=(;2)0:Solution:The…rsttwopopulationmomentsareE(Xt)=;E(X2t)=2+2:The…rsttwosamplemomentsare^m1=Xn;^m2=1nnXt=1X2t:Matchingthe…rsttwomoments,wehaveXn=^;1nnXt=1X2t=^2+^2:ItfollowsthattheMME^=Xn;^2=1nnXt=1X2tX2n=1nnXt=1(XtXn)2:Itiswell-knownthat^!pand^2!p2asn!1:38.2GeneralizedMethodofMomentsSuppose isaK1unknownparametervector,andthereexistsal1momentfunctionmt( )suchthatE[mt( 0)]=0;wheresub-indextdenotesthatmt( )isafunctionofboth andsomerandomvariablesrelatedtoindext.Forexample,wemayhavemt( )=Xt(YtX0t )intheOLSestimation,ormt( )=Zt(YtX0t )inthe2SLSestimation.Ifl=K;themodelE[mt( 0)]=0iscalledexactlyidenti…ed.IflK;themodeliscalledoveridenti…ed.ThemomentconditionE[mt( 0)]=0mayfollowfromeconomicand…nancialtheory(e.g.rationalexpectationsandcorrectdynamicassetpricing).Wenowillustratethisbythefollowingexample.Example[HansenandSingleton(1982,Econometrica)CapitalAssetPricingModel]:SupposearepresentativeeconomicagenthasaconstantrelativeriskaversionutilityoverhislifetimeU=nXt=0tu(Ct)=nXt=0tCt1;whereu()isthetime-invariantutilityfunctionoftheeconomicagentineachtimeperiod(hereweassumeu(c)=(c1)=),istheagent’stimediscountfactor,istheeconomicagent’sriskaversionparameter,andCtistheconsumptionduringperiodt:Lettheinformationavailabletotheagentattimet1berepresentedbythesigma-algebraIt1–inthesensethatanyvariablewhosevalueisknownattimet1ispresumedtobeIt1-measurable,andletRt=PtPt1=1+PtPt1Pt1bethegrossreturntoanassetacquiredattimet1atthepriceofPt1(weassumenodividendontheasset).Theagent’soptimizationproblemistomaxfCtgE(U)4subjecttotheintertemporalbudgetconstraintCt+Ptqt=Yt+Ptqt1;whereqtisthequantityoftheassetpurchasedattimetandWtistheagent’slaborincomeduringperiodt.De…nethemarginalrateofintertemporalsubstitutionMRSt=@u(Ct)@Ct@u(Ct1)@Ct1=CtCt11:The…rstorderconditionsoftheagentoptimizationproblemarecharacterizedbytheEulerequation:EMRSt( 0)RtjIt1=1forsome 0:Thatis,themarginalrateofintertemporalsubstitutiondiscountsgrossreturnstounity.Remark:Anydynamicassetpricingmodelisequivalenttoaspeci…cationofMRSt:WemaywritetheEulerequationasfollows:E[fMRStRt1gjIt1]=0:Thus,onemayviewthatfMRStRt1gisageneralizedmodelresidualwhichhastheMDSpropertywhenevaluatedatthetruestructralparameters 0=(;)0:Question:Howtoestimatetheunknownparameter inanassetpricingmodel?Moregenerally,howtoestimate fromanylinearornonlineareconometricmodelwhichcanbeformulatedasasetofmomen

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功