课题28.1.1锐角三角函数——正弦课型新授课课时1教学目标1、理解锐角三角函数的定义,掌握锐角三角函数的表示法;2、能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;3、掌握Rt△中的锐角三角函数的表示:sinA=斜边的对边A,cosA=斜边的邻边A,tanA=的邻边的对边AA4、掌握锐角三角函数的取值范围;5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。教学重点难点教学重点:锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。教学难点:锐角三角函数概念的形成。教学准备多媒体教学过程一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。你想知道小明怎样算出的吗?下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦二、探索新知、分类应用【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB根据“再直角三角形中,30°角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21【问题二】如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比ABBC,能得到什么结论?(学生思考)结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。【问题三】一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC和Rt△A′B′C′,∠C=∠C′=90o,∠A=∠A′=α,那么''''BCBCABAB与有什么关系?分析:由于∠C=∠C′=90o,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′,''''BCABBCAB,即''''BCBCABAB结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。【活动二】认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。记作sinA。板书:sinA=AaAc的对边的斜边(举例说明:若a=1,c=3,则sinA=31)【注意】:1、sinA不是sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56°、sin∠DEF3、sinA是线段之间的一个比值;sinA没有单位。提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?【活动三】正弦简单应用例1如课本图28.1-5,在Rt△ABC中,∠C=90°,求sinA和sinB的值.教师对题目进行分析:求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比.我们已经知道了∠A对边的值,所以解题时应先求斜边的高.作业布置完成同步练习课堂总结在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。