Lecture04一元时间序列分析方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章一元时间序列分析方法学习目标:了解平稳性和白噪声过程;熟悉随机序列模型;熟悉ARIMA过程;掌握时间序列的平稳性和单位根检验。第四章一元时间序列分析方法第一节时间序列的相关概念第二节随机序列模型第三节单整自回归移动平均模型第四节平稳性与单位根检验时间序列的相关概念第一节时间序列的相关概念一、平稳性平稳性是时间序列分析的基础。判断一个序列平稳与否非常重要,因为一个序列是否平稳会对它的行为及其性质产生重要的影响。在时间序列平稳性,一般包括下列两类平稳过程:1、严格平稳过程(StrictlyStationaryProcess)如果对所有的t,任意正整数n和任意n个正整数(),()的联合分布与()的联合分布是相同的,即:1,,ntt1,,nttyy1,,ntmtmyy1111,,,,ttnntmtnmnPybybPybyb时间序列的相关概念2、弱平稳性过程(WeaklyStationaryProcess)如果一个时间序列的均值,方差在时间过程上保持是常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间,则称时间序列是弱平稳的。弱平稳的时间序列有如下性质:可见,如果一个时间序列概率分布的所有阶矩都不随时间变化,那它就是严格平稳的;而如果仅仅是一阶矩和二阶矩(即均值和方差)不随时间变化,那它就是弱平稳的。tyty2()()ttEyuyu()tEyuuEyytttt()()122112,tt时间序列的相关概念二、自协方差(auto-covariance)决定是如何与它自身的先前值相关的,对于一个平稳的时间序列,它只依赖于与之差。其中,被称为自协方差函数。另一种更为简洁的方法使用自相关系数来描述他们之间的关系。考虑弱平稳时间序列,当与它的过去值线性相关时,可以把相关系数的概念推广到自相关系数,与的相关系数称为的间隔为的自相关系数,通常记为,在弱平稳性的假定下它只是的函数,定义tyty1ty[()][()],0,1,2tttstssEyEyEyEystytytlytytlytylll(,)()()ttlttlCovyyVaryVary0(,)()ttlltCovyyVary==时间序列的相关概念三、白噪声过程如果时间序列是一个有有限均值和有限方差的、独立同分布的随机变量序列,则称时间序列为白噪声。特别的,若时间序列还服从均值为0,方差为的正态分布,则这个序列称为高斯白噪声。它是其它各类型时间序列的重要组成部分,在金融市场效率理论中具有重要的意义。对于白噪声序列,自相关系数为零。在实际应用中,如果所有样本的自相关函数接近为零,则认为这个序列为白噪声序列。若一个随机过程满足:则我们称之为白噪声过程(whitenoiseprocess)。tyty2()tEy2()tVary2tr0trtr若若随机序列模型第二节随机序列模型若对每一个固定的t,是一个随机变量,则,,┅,┅为随机时间序列。而揭示随机时间序列自身变化规律和相关关系的数学表达式就是时间序列分析模型。随机时间序列分析模型分为三类:自回归模型(auto-regressivemodel,AR)、移动平均模型(moving-averagemodel,MA)和自回归移动平均模型(auto-regressivemovingaveragemodel,ARMA)。对于任一个时间序列,怎样判断它是遵循纯AR过程(若是的话,阶数p取什么值),纯MA过程,(若是的话,阶数q取什么值)或是ARMA模型,此时p和q各取多少。我们将遵循以下四个步骤对这三个模型做一详细介绍:ty1y2yty随机序列模型步骤一:识别。就是找出适当的p和q值。我们即将说明怎样借助相关图和偏相关图来解决此类问题。步骤二:估计。一旦辨别适当的p和q值,下一步便是估计模型中所含自回归和移动平均项的参数。步骤三:诊断。选定模型并估计其参数之后,下一步就要看所选的模型对数据拟合的是否够好。对所选模型的一个简单的检验,是看从该模型估计出来的残差是不是白噪声;如果是,就可接受这个具体的拟合;如果不是,我们必须重新在做。步骤四:预测。ARMA建模方法之所以得以普及,理由之一是它在预测方面的成功。有许多事例用这个方法做出的预测比用传统的计量经济建模方法做出的预测更为可靠,特别是在短期预测方面。随机序列模型一、自回归模型(AR)若一个时间序列可表示为(4.12)其中,为白噪声,,,则称为一阶自回归过程,或简称为。自回归模型是时间序列表示为它的先前值与一个误差项的线性函数。在p阶自回归中,、,,是自回归参数,它表明每改变一个单位时间值时,对所产生的影响,它是根据样本观测值来估计的参数。011tttyyt()0tE2var()ttr(1)ARtyt12pty随机序列模型2、AR模型阶的识别在实际应用中,一个AR时间序列的p阶是未知的,必须根据实际情况来决定。这个问题叫做AR模型的阶的决定。一般可以通过两种方法:第一种方法是利用偏自相关函数(partialautocorrelationfunction,PACF),第二种方法是用某个信息准则函数。(1)偏自相关函数(PACF)偏自相关就是和之间的,除去居中的诸(即)的影响后的相关。其相关程度可用偏自相关系数度量。进行回归对一个模型,间隔为的样本偏自相关系数不应为零,而对所有,应接近零,我们利用这一性质来决定p阶。tytlyy12,1,tttlyyy,ll0111(1),,1,2,,ttltllltltyyyytT()ARpjp,jj随机序列模型(2)采用信息准则法判别模型阶数在实际应用中,很难利用自相关函数来确定模型的合理阶数。较为简便的方法是,所选定的阶数应使得信息准则的数值达到最小。对于信息准则,一般应用赤池(Akaike)准则信息准则(AIC)和许瓦兹(Schwarz)贝叶斯信息准则(SBIC)。随机序列模型3、参数估计对一个模型,我们常用条件最小二乘法来估计其参数,条件最小二乘是从第个观测值开始的。4、模型验证对实际数据所时拟合的模型,要仔细地验证它的合理性。若模型是合理的,其残差序列应该是白噪声。残差的样本自相关函数和Ljung-Box统计量可用来检验与一个白噪声的接近程度。对模型,Ljung-Box统计量渐进服从自由度为m-p的分布。如果所拟合的模型经经验验证是不合理的,那么就需要对它进行修正。()ARp1pt()ARp()Qm2随机序列模型5、预测预测是时间序列分析的一个重要应用。向前一步预测向前两步预测向前多步预测随机序列模型6、判定预测是否精确在实际中应用中,通常是对整个样本外的区间进行预测,然后将其与实际值比较,把他们之间的差异用某种方法加总。对第i个观测值的预测误差定义为其实际值和预测值之间的差值,再求其平方或取其绝对值使各项为正后进行加总。随机序列模型[案例说明4-1]上证指数收益率的AR建模本案例数据来自高铁梅(2006)《计量经济分析方法与建模》,数据选取了上证收盘指数(1991年1月~2003年3月)的月度时间序列S作为研究对象,用AR(1)模型描述其变化规律。在此,对其做变化率,这样便得到了变化率序列。一般来讲,股价指数序列并不是一个平稳的序列,而通过变化后的变化率数据,是一个平稳序列,可以作为我们研究、建模的对象。对上证收益率数据拟合。在此,记上证股价指数变化率序列为sr,建立如下模型:11100/(1,2,,),ttttsrSSStT1tttsrcsru1,2,,tT[案例说明4-1]上证指数收益率的AR建模图4-2:AR(1)回归结果[案例说明4-1]上证指数收益率的AR建模-4004080120160200919293949596979899000102SRSRF图4-3:上证指数收益率序列及其拟合值在图4-3中,实线是上证指数变化率序列,虚线是AR(1)模型的拟合值。从该图可以看出我国上证股价指数变化率序列在1991-1994年之间变化很大,而后逐渐趋于平稳。近年来,波动平缓,并且大多在3%下面波动。拟合曲线基本代表了这一时期的均值。随机序列模型[案例说明4-2]应用AR(1)进行预测下面,我们利用建立的AR(1)模型进行预测。我们选取2000年1月至2006年6月的我国广义货币供应量(M2)月度数据的时间序列,进行AR(1)建模并预测。1000001500002000002500003000003500004000002000200120022003200420052006M2FForecast:M2FActual:M2Forecastsample:2000M012006M07Adjustedsample:2000M022006M07Includedobservations:78RootMeanSquaredError3494.959MeanAbsoluteError2842.679MeanAbs.PercentError1.555453TheilInequalityCoefficient0.008101BiasProportion0.467290VarianceProportion0.048130CovarianceProportion0.484580图4-5:利用AR模型进行预测随机序列模型二、移动平均模型(MA)若一个随机过程可为下面形式:(4.40)则称方程式(4.40)表示的是q阶的移动平均过程(movingaverage),表示为。在模型中,为参数,为白噪声过程。最简单的移动平均过程是,可表达为:tx011tttqtqyc()MAq()MAq12,,,qt(1)MA1(1)ttyL()MAq随机序列模型1、MA模型阶的识别自相关函数是识别MA模型的阶的有用工具。一个时间序列具有自相关函数,若但对有,则服从一个模型。2、MA模型估计估计MA模型通常用最大似然法。有两种方法求MA模型的似然函数。第一种是条件似然法,即假定初始的扰动(即,)都是0;这样,计算似然函数所需要的抖动可以递推得到。第二种方法是把初始抖动,当作模型的附加参数与其它参数一起估计出来。tyl0llp0lty()MAqt0t110yc22011,,yct0t随机序列模型随机序列模型3、MA模型预测由于MA模型有有限记忆性,它的点预测很快可以打到序列的均值。设预测原点为,对MA(1)过程的向前1步预测,模型为取条件期望,我们有向前1步预测误差的方差为。h1011hhhyc1101(1)(,,)hhhhhrEyyyc11(1)(1)hhhheyy2(1)hVare随机序列模型三、ARMA模型自回归模型和移动平均模型是时间序列中最基本的两种模型类别,将这两种基本的模型类别结合起来,就产生了自回归移动平均模型(ARMA)。若一个时间序列可表示为:(4.51)或者表达为:(4.52)则称时间序列模型为自回归移动平均模型,表示为。在模型中,和分别表示为滞后之后p和q阶的表达式,并称其为自回归算子和移动平均算子。tx1111ttptpttqtqyyy11(1)(1)pqptqLLyLL()()ttLyL(,)ARMApq()L()L随机序列模型[案例说明4-3]应用Eviews建立ARMA模型的实例——以中国联通(600050)为例使用的数据为联通公司股票的日股价序列,期限为2003-1-2日至2006年9月

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功