求代数式值及规律的技巧

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

精心整理精心整理求代数式值及规律的技巧专训一:求代数式值的技巧要点识记:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.(2015·大连)若a=49,b=109,则ab-9a的值为________.2.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值.(2)从中你发现怎样的规律?先化简再代入求值3.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=-1.特征条件代入求值4.已知|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.整体代入求值5.已知2x-3y=5,求6x-9y-5的值.6.已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值是多少?整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:精心整理精心整理(1)m2-n2;(2)m2-2mn+n2.取特殊值代入求值9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.专训二:与数有关的排列规律名师点金:1.数式中的排列规律,关键是找出前面几个数或式与自身序号数的关系,从而找出一般规律,进而解决问题.2.数阵中的排列规律的探究一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.数式的排列规律1.已知9×1+0=9,9×2+1=19,9×3+2=29,9×4+3=39,…,根据此规律写出第6个式子为__________.2.如图,填在各正方形中的四个数之间都有相同的规律,根据这种规律,推出m的值是__________.(第2题)3.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,-3,4,-5,6,….将这些数排成如图的形式,根据其规律猜想:第20行第3个数是________.(第3题)数阵中的排列规律精心整理精心整理类型1长方形排列4.如图是某月的日历.日一二三四五六12345678910111213141516171819202122232425262728293031(第4题)(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个像这样的位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?类型2十字排列5.将连续的奇数1,3,5,7,9,…,按如图所示的规律排列.(第5题)(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型3斜排列6.如图所示是2016年6月份的日历.精心整理精心整理(第6题)(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.专训三:关于图形中的排列规律的几种常见类型名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.三角形个数规律的探究1.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有______个三角形(用含n的代数式表示).(第1题)四边形中个数规律的探究2.(中考·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为()(第2题)A.20B.27C.35D.403.(中考·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.精心整理精心整理(第3题)(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?点阵图形中个数规律的探究4.观察如图的点阵图形和与之相对应的等式,探究其中的规律:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④________________;⑤________________.…(第4题)(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n个图形相对应的等式.圆中面积规律的探究5.分别计算图①②③中阴影部分的面积,你发现了什么规律?(第5题)专训四:整体思想在整式加减中的应用名师点金:整式化简时,经常把个别多项式作为一个整体(当作单项式)进行合并;精心整理精心整理整式的化简求值时,当题目中含字母的部分可以看成一个整体时,一般用整体代入法,整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.应用整体思想合并同类项1.化简:4(x+y+z)-3(x-y-z)+2(x-y-z)-7(x+y+z)-(x-y-z).应用整体思想去括号2.计算:3x2y-[2x2z-(2xyz-x2z+4x2y)].直接整体代入3.设M=2a-3b,N=-2a-3b,则M+N=()A.4a-6bB.4aC.-6bD.4a+6b4.若x+y=-1,xy=-2,则x-xy+y的值是________.5.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.变形后再整体代入6.(中考·威海)若m-n=-1,则(m-n)2-2m+2n的值是()A.3B.2C.1D.-17.已知3x2-4x+6的值为9,则x2-x+6的值为()A.7B.18C.12D.98.已知-2a+3b2=-7,则代数式9b2-6a+4的值是________.9.已知a+b=7,ab=10,则代数式(5ab+4a+7b)-(4ab-3a)的值为________.10.已知14x+5-21x2=-2,求代数式6x2-4x+5的值.精心整理精心整理11.当x=2时,多项式ax3-bx+5的值是4,求当x=-2时,多项式ax3-bx+5的值.特殊值法代入12.已知(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,求:(1)a0+a1+a2+a3+a4的值;(2)a0-a1+a2-a3+a4的值;(3)a0+a2+a4的值.精心整理精心整理专训五:整式及其加减中的几种热门考点名师点金:本章的主要内容有整式的定义及其相关概念,整式的加减等,学好这些内容为后面学习整式乘法打好基础.而在中考命题中,对这些内容的考查常与其他知识相结合,主要以填空、选择题的形式出现.整式的概念1.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项式D.是单项式2.若5a3bn与-amb2是同类项,则mn的值为()A.3B.4C.5D.63.-πx2y3的系数是________,次数是________.整式的加减运算4.下列正确的是()A.7ab-7ba=0B.-5x3+2x3=-3C.3x+4y=7xyD.4x2y-4xy2=0(第5题)5.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm,m>n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcmB.4ncmC.2(m+n)cmD.4(m-n)cm6.先化简,再求值:(1)a--,其中a=-;精心整理精心整理(2)2(2x-3y)-(3x+2y+1),其中x=2,y=-.整式的应用7.可以表示“比a的平方的3倍大2的数”的是()A.a2+2B.3a2+2C.(3a+2)2D.3a(a+2)28.(中考·达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.大客车上原有(4a-2b)人,中途下车一半人,又上车若干人,这时车上共有(8a-5b)人,那么上车乘客是________人.(用含a,b的代数式表示)数学思想方法的应用类型1整体思想10.已知2x2-5x+4=5,求式子(15x2-18x+4)-(-3x2+19x-32)-8x的值.类型2转化思想11.已知A=-3x2-2mx+3x+1,B=2x2+2mx-1,且2A+3B的值与x无关,求m的值.探究规律12.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()(第12题)13.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为精心整理精心整理________________.答案专训一1.49002.解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a+b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a=4,b=-3时,a2+2ab+b2=42+2×4×(-3)+(-3)2=1,(a+b)2=(4-3)2=1.(2)a2+2ab+b2=(a+b)2.3.解:原式=A-2A+2B+4(B-C)=A-2A+2B+4B-4C=-A+6B-4C.因为A=1-x2,B=x2-4x-3,C=5x2+4,所以原式=x2-1+6x2-24x-18-4(5x2+4)=-13x2-24x-35.当x=-1时,原式=-13×(-1)2-24×(-1)-35=-13+24-35=-24.4.解:由条件|x-2|+(y+1)2=0,得x-2=0且y+1=0,所以x=2,y=-1.原式=-4x+6y2+5x-5y2-1=x+y2-1.当x=2,y=-1时,原式=2+(-1)2-1=2.5.解:6x-9y-5=3(2x-3y)-5=3×5-5=10.6.解:因为当x=2时,多项式ax3-bx+1的值是-17,所以8a-2b+1=-17.所以8a-2b=-18.当x=-1时,12ax-3bx3-5=-12a+3b-5=(-12a+3b)-5=-(8a-2b)-5=-×(-18)-5=22.精心整理精心整理7.解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy-3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.8.解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.9.解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b+c+d,所以a+b+c+d=8.所以a+b+c=8-1=7.专训二1.9×6+5=592.1583.3644.解:(1)带阴影的长方形框中的9个数之和是其正中间的数的9倍.(2)带阴影的长

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功