小学数学的基本公式和常用的等量关系常用的单位及进率时间单位1世纪=100年1年=12月大月(31天)有:1月、3月、5月、7月、8月、10月、12月小月(30天)的有:4月、6月、9月、11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒长度单位:1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积单位1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升1毫升=1立方厘米重量单位1吨=1000千克1千克=1000克=1公斤数学中常用的字母代表的含义C周长S面积a边长V体积a棱长h高小学数学图形的基本公式:1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a×a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2半径=直径÷2d=2rr=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径?=π×r×r11、长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)12、长方体的体积=长×宽×高V=abh13、正方体的表面积=棱长×棱长×6S=6×a×a14、正方体的体积=棱长×棱长×棱长V=a×a×a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr+2πrh17、圆柱的体积=底面积×高V=Sh18、圆锥的体积=底面积×高÷3V=Sh÷3数学中常用的运算定律1、加法交换律:a+b=b+a2、加法结合律:a+b+c=a+(b+c)3、乘法交换律:a×b=b×a4、乘法结合律:a×b×c=a×(b×c)5、乘法分配律:a×b+a×c=a×b+c6、除法的性质:a÷b÷c=a÷(b×c)基本的等量关系1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、总数÷总份数=平均数11、和差问题(和+差)÷2=大数(和-差)÷2=小数12、和倍问题和÷(倍数-1)=小数小数×倍数=大数13、差倍问题差÷(倍数-1)=小数小数×倍数=大数数学应用题中常见数量关系式子追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本=(售出价÷成本-1)涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价(折扣<1)利息=本金×利率×时间植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数数学中基本性质和基本概念除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。有余数的除法:被除数=商×除数+余数等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。方程式:含有未知数的等式叫方程式。一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。。代数:代数就是用字母代替数。代数式:用字母表示的式子叫做代数式。如:3x=ab+c分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数乘整数方法:用分数的分子和整数相乘的积作分子,分母不变。分数乘分数方法:用分子相乘的积作分子,分母相乘的积作为分母。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。分数除以整数(0除外),等于分数乘以这个整数的倒数。分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小分数的除法则:除以一个数(0除外),等于乘这个数的倒数。真分数:分子比分母小的分数叫做真分数。假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。带分数:把假分数写成整数和真分数的形式,叫做带分数。分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。比例:表示两个比相等的式子叫做比例。如3:6=9:18比例的基本性质:在比例里,两外项之积等于两内项之积。正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。把小数化成百分数方法:只要把小数点向右移动两位,同时在后面添上百分号。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。把分数化成百分数方法:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后(分子除以分母)把百分数化成分数方法:先把百分数改写成分数,能约分的要约成最简分数。倍数与约数最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。例如6=2×3倍数特征:2的倍数的特征:个位是0,2,4,6,8的数。3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。5的倍数的特征:个位是0,5。4(或25)的倍数的特征:末2位是4(或25)的倍数。8(或125)的倍数的特征:末3位是8(或125)的倍数。7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。有倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。有互质关系的两个数,最大公约数为1,最小公倍数为乘积。两个数分别除以他们的最大公约数,所得商互质。两个数的与最小公倍数的乘积等于这两个数的乘积。两个数的公约数一定是这两个数最大公约数的约数。1既不是质数也不是合数。用6去除大于3的质数,结果一定是1或5。