NUAA第1页(共6页)MatrixTheory,FinalTestDate:2015年1月14日矩阵论班号:学号姓名题号必做题(70分)选做题(30分)总分1234567得分PartI(必做题,共4题,70分)第1题(20分)得分Let310821012A.(1)ProvethatmatrixAhasauniqueelementarydivisor3(1)andfindaJordancanonicalformofA.(2)FindanonsingularmatrixPsuchthat1PAPisinJordancanonicalform.(3)Compute2Ae.第2页(共6页)第3页(共6页)第2题(15分)得分Let2()(2)(3)mbetheminimalpolynomialfora44complexmatrixA.(1)WhatarethepossibilitiesforthecharacteristicpolynomialofmatrixA.Explain.(2)FindallpossibleJordancanonicalforms(uptosimilarity)ofmatrixA.Explain.Hint:Thedegreeofthecharacteristicpolynomialofannnmatrixisn.第4页(共6页)第3题(15分)得分Let1211221221(,)726i6i+fxxxxxxxxxx,wherei1istheimaginaryunit.(1)FindtheHermitianmatrixAsuchthat12(,)xxHfxxA,where12xxx.(2)Reducethisquadraticformtoitsstandardform(标准形)byaunitarytransformationxyU.(需写出U和标准形的具体表达式)(3)FindamatrixBsuchthat2BA.(只需利用已知矩阵和常数矩阵表示B,不需要计算出B的最终结果.12A或A这样的表达式不可使用.)第5页(共6页)第4题(20分)得分Let111111112A.(1)Findafull-rankfactorizationofA.(2)FindtheMoore-PenroseinverseAofmatrixA.(3)Findtheorthogonalprojectionofvector3(1,2,0)bRTontothecolumnspaceofA.第6页(共6页)PartII(选做题,每题15分)请在第5、第6、第7题中选择两题解答.如果你做了三题,请在题号上画圈标明需要批改的两题.否则,阅卷者会随意挑选两题批改,这可能影响你的成绩.第5题LetVbeaninnerproductspaceofdimensionn,andSbeasubspaceofV.dim(S)0k.LetbealineartransformationthatorthogonallyprojectseachvectorinVontothesubspaceS.(1)Showthatisdiagonalizable.(2)Showthatthecharacteristicpolynomialoftherepresentingmatrixofis(1)nkk.第6题LetAbeanHermitianmatrix,i1betheimaginaryunit,andtbeanonzerorealnumber.(1)ShowthatitIAanditIAarebothnonsingular.(2)(i)(i)tIAtIAisHermitianandpositivedefinite.第7题LetRmnA.ShowthatforeachbRm,()bTTAAAisaleast-squaressolutiontothesystemxbA.若正面不够书写,请写在反面.选做题得分