第1页共3页高二数学必修2测试题一、选择题(12×5分=60分)1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C.垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。D.2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;B.如果α⊥β,那么α内所有直线都垂直于平面β;C.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ.3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()A.300B.450C.600D.9004、右图的正方体ABCD-A’B’C’D’中,二面角D’-AB-D的大小是()A.300B.450C.600D.9005、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()A.a=2,b=5;B.a=2,b=5;C.a=2,b=5;D.a=2,b=5.6、直线2x-y=7与直线3x+2y-7=0的交点是()A(3,-1)B(-1,3)C(-3,-1)D(3,1)7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()A4x+3y-13=0B4x-3y-19=0C3x-4y-16=0D3x+4y-8=08、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()A.3a;B.2a;C.a2;D.a3.ABDA’B’D’CC’第2页共3页9、已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm;B.cm34;C.4cm;D.8cm。10、圆x2+y2-4x-2y-5=0的圆心坐标是:()A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).11、直线3x+4y-13=0与圆1)3()2(22yx的位置关系是:()A.相离;B.相交;C.相切;D.无法判定.12、圆C1:1)2()2(22yx与圆C2:16)5()2(22yx的位置关系是()A、外离B相交C内切D外切二、填空题(5×5=25)13、底面直径和高都是4cm的圆柱的侧面积为cm2。14、两平行直线0962043yxyx与的距离是。15、、已知点M(1,1,1),N(0,a,0),O(0,0,0),若△OMN为直角三角形,则a=____________;16、若直线08)3(1myxmyx与直线平行,则m。17,半径为a的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为________________;三、解答题18、(10分)已知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程。19、(10分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长。20、(15分)如图,在边长为a的菱形ABCD中,ABCDPCABC面,60,E,F是PA和AB的中点。第3页共3页(1)求证:EF||平面PBC;(2)求E到平面PBC的距离。21、(15分)已知关于x,y的方程C:04222myxyx.(1)当m为何值时,方程C表示圆。(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=54,求m的值。22、(15分)如图,在底面是直角梯形的四棱锥S-ABCD中,.21,1,90ADBCABSAABCDSAABC,面(1)求四棱锥S-ABCD的体积;(2)求证:;SBCSAB面面(3)求SC与底面ABCD所成角的正切值。SCADBABCDPEF