1.3二次函数的性质

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

教师备课教学内容1.3二次函数的性质第(1)课时教学目标1.从具体函数的图象中认识二次函数的基本性质.2.了解二次函数与二次方程的相互关系.3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性教学重、难点二次函数的最大值,最小值及增减性的理解和求法.二次函数的性质的应用.教学过程复习引入二次函数:y=ax2+bx+c(a0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.二,新课教学:1.探索填空:根据下边已画好抛物线y=-2x2的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小.当x=时,函数y最大值是____.当x____0时,y0.2.探索填空::据上边已画好的函数图象填空:抛物线y=2x2的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而减少;在侧,即x_____0时,y随着x的增大而增大.当x=时,函数y最小值是____.当x____0时,y03.归纳:二次函数y=ax2+bx+c(a≠0)的图象和性质(1).顶点坐标与对称轴(2).位置与开口方向(3).增减性与最值当a﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x一般地,函数y=ax²的图象先向右(当m0)或向左(当m0)平移|m|个单位可得y=a(x+m)2的图象;若再向上(当k0)或向下(当k0)平移|k|个单位可得到y=0y=-2x20y=2x2yx的增大而增大;当时,函数y有最小值。当a﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值4.探索二次函数与一元二次方程二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1).每个图象与x轴有几个交点?(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?5.例题教学:例1:已知函数⑴写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图;(2)自变量x在什么范围内时,y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。归纳:二次函数五点法的画法三.巩固练习:请完成课本练习:p42.1,2四.尝试提高:1五.学习感想:1、你能正确地说出二次函数的性质吗?2、你能用“五点法”快速地画出二次函数的图象吗?你能利用函数图象回答有关性质吗?六:作业:作业本,课本作业题1、2、3、4。a(x+m)2+k的图象。教学板书1.3二次函数的性质回顾例1例2教学反思当a﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值abx2abx2a4ac4b2215x721yx2

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功