研究性学习报告科目:数学课题:有关勾股定理的探究探究人:吴宇辰班级:高一(1)班学号:40课题提出:懂得勾股定理,却并不知它的起源、发展。本课题欲深入探究,更透彻了解和掌握勾股定理。探究途径:阅读书籍、向老师问讯、上网搜索等。课题资料:定义:在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。即勾的平方加股的平方等于弦的平方简介:勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。勾股定理指出直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a^2+b^2=c^2勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。勾股数组:满足勾股定理方程a2+b2=c2;的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。由于方程中含有3个未知数,故勾股数组有无数多组。勾股数组的通式:a=M^2-N^2b=2MNc=M^2+N^2(MN,M,N为正整数)推广:1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。2.勾股定理是余弦定理的特殊情况。定理如果直角三角形两直角边分别为A,B,斜边为C,那么A+B=C即直角三角形两直角边长的平方和等于斜边长的平方。古埃及人用这样的方法画直角如果三角形的三条边A,B,C满足A+B=C;还有变形公式:AB=根号(AC+BC=AB),如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)勾股定理的来源:毕达哥拉斯是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。常用勾股数组(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25)毕达哥拉斯树:毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后的形状好似一棵树,所以被称为毕达哥拉斯树。直角三角形两个直角边平方的和等于斜边的平方。两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。利用不等式A2+B2≥2AB可以证明下面的结论:三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米∵a=√[l2-(l-h)2]=√[52-(5-1)2]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。《周髀算经》中勾股定理的公式与证明:《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是中国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)而勾股定理的证明呢,就在《周髀算经》上卷一[2]——昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。《周髀算经》证明步骤“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。“故折矩,以为勾广三,股修四,径隅五。”:开始做图——选择一个勾三(圆周率三)、股四(四方)的矩,矩的两条边终点的连线应为5(径隅五)。“既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有边长三勾方、边长四股方、边长五弦方三个正方形。“两矩共长二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形减去右上、左下两个长方形面积后为勾方股方之和。因三角形为长方形面积的一半,可推出四个三角形面积等于右上、左下两个长方形面积,所以勾方+股方=弦方。赵爽弦图:注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。下为赵爽证明——青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有A2+B2=C2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。以勾为边的的正方形为朱方,以股为边的正方形为青方。以盈补虚,只要把图中朱方(A2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(C……2).由此便可证得a2+b2=c2。加菲尔德证明勾股定理的故事:1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员加菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是加菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”加菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”加菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。如下:解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的正方形面积。勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,a2+b2=c2;说明:中国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理称为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;=a的平方+b的平方=9+16=25即c=5则说明斜边为5。多种证明方法:这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(ElishaScottLoomis)的PythagoreanProposition(《毕达哥拉斯命题》)一书中总共提到367种证明方式。有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180°―90°=90°又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形。∴∠ABC+∠CBE=90°∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90°即∠CBD=90°又∵∠BDE=90°,∠BCP=90°,BC=BD=a.∴BDPC是一个边长为a的正方形。同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则A2+B2=C2证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°。∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.即A2+B2=C2证法3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再作一个边长为c的正方形。把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90°,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90°,∴∠ABG+∠CBJ=90°,∵∠ABC=90°,∴G,B,I,J在同一直线上,A2+B2=C2。证法4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADL