吴大正-信号与系统公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章信号与系统信号的分类确定信号周期信号连续时间信号能量信号随机信号非周期信号离散时间信号功率信号信号的时域运算(1)移位为常数00,tttf00t,0ttf为tf波形在t轴上左移0t;00t,0ttf为tf波形在t轴上右移0t.(2)反转tftf波形为tf波形以0t为轴反转。(3)尺度变换atf,a为常数1a,atf波形为tf的波形在时间轴上压缩为原来的a1;10a,atf波形为tf的波形在时间轴上扩展为原来的a1;(4)微分运算)(tfdtd(5)积分运算dft)((6)相加)()()(21tftftf(7)相乘)()()(21tftftf奇异信号(1)阶跃函数0,0t)(t21,0t1,0t(2)冲激函数0,0)(ttDirac定义1)(dtt(3)阶跃函数与冲激函数的关系dttdt)(dxxtt)()((4)阶跃函数的积分)(tr斜坡函数)()()(ttdxxtrt0,0,0ttt(5)冲激函数的导数和积分)(t称为冲激偶0)(1)(dttdtt(6)冲激函数的性质1.相乘性质)()(0tttf=)()(00tttf)()()()()()(00000tttftttftttf2.抽样性质)()()(00tfdttttf)()()(00tfdttttf3、尺度变换性)(1)(taat)(11)()()(taaatnnn4.偶对称性)()(tt第二章连续系统的时域分析2.1LTI连续系统的响应n阶常系数线性微分方程的全解由齐次解)(tyh和特解)(typ组成,即)()()(tytytyph齐次解(二阶0qyypy)1)21时,xxeCeCy21212)21时,xexCCy1)(213)i21、时,)sincos(21xCxCeyx特解(二阶)(xfqyypy)(1)kxnexPxf)()(①:若k非特征值,令kxnnexaxaxaay)(22100如xebaxy)(0②:若k与一个特征值相同,令kxnnexaxaxaaxy)(22100如xebaxxy)(0③:若k与两个特征值都相同,令kxnnexaxaxaaxy)(221020如xebaxxy)(20(2)]sin)(cos)([)(xxPxxPexfslx令},max{sln①:若i不是特征值,令]sin)(cos)([)()2()1(0xxQxxQexynnx②:若i是特征值,令]sin)(cos)([)()2()1(0xxQxxQxexynnx如]sin)(cos)[()(0xdcxxbaxxexyx2.3卷积积分一般而言,两个函数)()(21tftf和卷积dtfftftftf)()()()()(2121LTI系统的零状态响应)(tyzs是激励)(tf与冲激响应)(th的卷积积分。dthftyzs)()()()(tttt)(21)()(2ttttt2.4卷积积分的性质一、卷积的代数运算交换律)()()()(1221tftftftf分配律)()()()()]()([)(3121321tftftftftftftf结合律)]()([)()()]()([321321tftftftftftf二、函数与冲激函数的卷积)()()()()(tftftttf推广:)()()()()(111ttftftttttf)()()()()(211221ttttttttttt)()()()()(211221tttfttttfttttf)()()()()(2112212211tttfttfttfttfttf三、函数与阶跃函数的卷积dfttft)()(dtfdftttfttt00)()(0四、卷积的微分与积分导数:)()()()()()1(212)1(1)1(tftftftftf积分:)()()()()()1(212)1(1)1(tftftftftf微分积分性质:)()()()()()(212121tftfdttdfdfdfdttdftt推广:)()()()(2)(1)(tftftfjiji五、相关函数dttftfdttftfR)()()()()(212112dttftfdttftfR)()()()()(212121)()(2112RR)()(1221RR自相关函数:dttftfdttftfR)()()()()()()(RR若)(1tf和)(2tf均为实偶函数,则卷积与相关完全相同。相关与卷积的关系:)()()()()(212112tftftftfR奇异信号的相关:)()()(tfttf)()()(tftftdfttft)()()(dftftt)()()(第三章离散系统的时域分析3.1LTI离散系统的响应一、差分与差分方程一阶前向差分定义为:)()1()(kfkfkf一阶后向差分定义为:)1()()(kfkfkf差分运算具有线性性质:)()()()(22112211kfakfakfakfa二、差分方程经典解n阶常系数线性差分方程:)()1()()()1()(0101mkfbkfbkfbnkyakyakymmn特解齐次解)()()(kykykyph齐次解:齐次方程0)()1()(01nkyakyakyn的解称为齐次解。特征方程00111aaannn单实根:kCr重实根:krrrrCkCkCkC)(012211如二重实根:kCkC01一对共轭复根jejba2,1:)]sin()cos([kDkCk特解:激励不等于特征根时当aPak,ka是特征单根时,当aaPPkk)(0重特征根时是,当raaPkPkPkPkrrrr][0111mk)sin()cos(kk或jekQkP,所有特征根不等于)sin()cos(全解:若方程特征根均为单根,全解为)()()()(1kyCkykykypnjkjjph对于n阶差分方程,用给定的n个初始条件)1()1()0(nyyy、可确定全部待定系数jC。)1()1()0()0(221121pnnpnyCCCyyCCCy三、零输入响应0)(0njzijnjkya一般设定激励是在k=0时接入系统的,在k0时,几个初始状态满足:)()()2()2()1()1(nynyyyyyzizizi四、零状态响应满足0)()2()1()()(00nyyyikfbjkyazszszsmiimnjzsjn如果系统激励)(kf是在0k时接入系统的,根据零状态响应的定义,有0,0)(kkyzs0),()(kkykyzi时,所有特征根均不等于10111PkPkPkPmmmm的特征根重等于,当有1][0111rPkPkPkPkmmmmr3.2单位序列和单位序列响应一、单位序列和单位阶跃序列单位序列定义为)(k0001kk,,单位序列的取样性质:)()()()(ikifikkf单位阶跃序列的定义:)(k0100kk,,也可写为0)()(jjkk3.3卷积和一、卷积和LTI系统对于任意激励的零状态响应是激励)(kf与系统单位序列响应)(kh的卷积和。izsikhifkhkfky)()()()()(一般而言,若有两个序列)(1kf和)(2kf,其卷积和为iikfifkfkfkf)()()()()(2121求和上下限有三种情况:1.)(1kf为因果序列02121)()()()(iikfifkfkf2.)(2kf为因果序列kiikfifkfkf)()()()(21213.)(1kf、)(2kf均为因果序列kiikfifkfkf02121)()()()(三、卷积和的性质1、交换律)()()()(1221kfkfkfkf2、结合律)()]()([)]()([)(321321kfkfkfkfkfkf3、分配律)()()()()]()([)(3121321kfkfkfkfkfkfkf4、)()(kkf与的卷积和)()()()()()(00kkfkkkfkfkkf5、)()(kkf与的卷积和0)()()(mmkfkkf6、卷积和的延迟)()()()()()()()(2121221112212211kkkfkfkfkkkfkkfkkfkkfkkf7、其他)()1()()(kkkk第四章傅立叶变换和系统的频域响应4.1信号分解为正交函数一、正交函数集三角型dttntmTtt)cos()cos(000020nmTnmTnm,当,当,当dttntmTtt)sin()sin(00020nmTnm,当,当0)(cos)(sin00dttntmTtt,对于所有的m和n指数型dtedteeTtttnmjTtttjntjm0000)(nmTnm,当,当04.2傅里叶级数周期信号)(tf在区间),(00Ttt可以展开成完备正交信号空间中的无穷级数。一、周期信号的分解设有周期信号)(tf,它的周期T,角频率TF22)(sin)cos(2)2sin()sin()2cos()cos(2)(11021210tnbtnaatbtbtataatfnnnn傅里叶系数21)(sin)(2210)(cos)(22222,,,ndttntfTbndttntfTaTTnTTn在)(tf一个周期积分,积分区间不唯一。同频率项合并可写成:)(cos2)2cos()cos(2)(1022110nnntnAAtAtAAtf其中)arctan(,2,12200nnnnnnabnbaAaA,nnnnnnAbnAaAasin2,1cos00二、奇、偶函数的傅里叶级数(1))(tf为偶函数0210)cos()(420nTnbndttntfTa,,(2))(tf为奇函数2021)sin()(40TnnndttntfTba,2)()()(2)()()(tftftftftftfevod(3))(tf为奇谐函数(半波对称函数))2()(Ttftf前半周期波形移动2T后与后半周期波形相对于横轴对称,傅里叶展开式只含有奇次谐波分量而不含偶次谐波分量,即0642420bbbaaa三、傅里叶级数的指数形式ntjnneFtf)(其中nnjnjnTTtjnneAeFndtetfTF211,0)(122

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功