《高斯消元法简介》教案一、教学目标知识与技能:了解高斯消元法过程与方法:直接演示说明,学习做简单练习情感,态度和价值观:进一步体会解方程组的根本思想消元,通过高斯消元的学习增强学习数学的能力二、重点与难点:高斯消元法三、课型新授课四、教学过程:1.在前面的几节课,已经用加减消元和代入消元法求解二元或者三元一次方程组,其基本的思想就是从已知的方程导出未知数较少的方程组,直到最后得到一个一元一次方程,这种做法可适用于一般的n元线性方程组(线性方程组),但是由于未知数的增加,我们希望我们的消元是有规律的,以避免混乱,下面介绍高斯消元法2.例1:解方程组1234123412341234251027612632517315292763xxxxxxxxxxxxxxxx解:把第一个方程的2倍,-3倍,5倍分别加到第2,3,4个方程上,可以消去2,3,4个方程的未知数1x12342342342342510522226217213xxxxxxxxxxxxx为了使以后少出现分数运算,交换第二,三个方程的位置12342342342342510215222267213xxxxxxxxxxxxx把第2个方程的-5倍,7倍分别加到第3,4个方程,可以消去第3,4个方程未知数2x12342343434251021312216126xxxxxxxxxxx整理一下方程,第3个方程的左右两边乘以13,第4个方程左右两边乘以16123423434342510214721xxxxxxxxxxx把第3个方程的-1倍加到第4个方程,可以消去第4个方程的未知数3x12342343442510214766xxxxxxxxxx把第4个方程两边除以-61234234344251021471xxxxxxxxxx把第4个方程41x的5,2,-4分别加到第1,2,3个方程123233425131xxxxxxx把第3个方程33x的2倍,-1倍分别加到第1,2个方程122341231xxxxx把第2个方程的1倍加到第一个方程12341231xxxx所以这个方程组的解是12341231xxxx说明:①以上自上而下求解方程组的过程就是高斯消元法利用高斯消元法任意的n元一次方程组都是可以有规律的得以求解②消元时要注意要让每一个方程的主元(第一个未知数的系数为1,以便消元)③注意未知数的位置*高斯消元法其实在我国的数学著作《九章算术》中早就有记载,叫高斯消元法西方人的叫法,实际比九章算术晚了1000多年2.练习:利用高斯消元法解方程组(1)2334xyxy;(2)3223xyxy.解:略3.练习:利用高斯消元法解方程组6342312xyzxyzxyz4.练习:利用高斯消元法解方程组(1)12341234123413423434622333223xxxxxxxxxxxxxxx;(2)12341234123234236=72=13xxxxxxxxxxxxxx.解:略123455(1)81xxxx,123447204xxxx数学家【人物介绍】物理学家、数学家卡尔·弗里德里希·高斯高斯[1](JohannCarlFriedrichGauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(LawofQuadraticReciprocity)、“质数分布定理”(primenumertheorem)、及“算术几何平均”(arithmetic-geometricmean)。1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如Fermat素数边数的正多边形可以由尺规作出。1855年2月23日清晨,高斯于睡梦中去世。生平高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。高斯的老师Bruettner与他助手MartinBartels很早就认识到了高斯在数学上异乎寻常的天赋,同时HerzogCarlWilhelmFerdinandvonBraunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。高斯于公元1805年10月5日与来自Braunschweig的JohannaElisabethRosinaOsthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的RichardDedekind和黎曼。高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子FriedericaWilhelmine(1788-1831)。他们又有三个孩子:Eugen(1811-1896),Wilhelm(1813-1883)和Therese(1816-1864)。1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。贡献18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(PlanetoidenCeres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家HeinrichOlbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(TheoriaMotusCorporumCoelestiuminsectionibusconicissolemambientium)中。高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--ThuringerWald的Inselsberg--哥廷根的HohenHagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一