10:14:58第十一章核磁共振波谱分析法一、原子核的自旋atomicnuclearspin二、核磁共振现象nuclearmagneticresonance三、核磁共振条件conditionofnuclearmagneticresonance四、核磁共振波谱仪nuclearmagneticresonancespectrometer第一节核磁共振基本原理nuclearmagneticresonancespectroscopy;NMRprinciplesofnuclearmagneticresonance10:14:58质量数(a)原子序数(Z)自旋量子(I)例子奇数奇或偶25,23,21,,2111HI715919613,,NFC8171735511,25,,,23OIClBI偶数偶数01632816612,,SOC偶数奇数1,2,3……51071412,3,,,1BINHI一、原子核的自旋atomicnuclearspin若原子核存在自旋,产生核磁矩:自旋角动量:核磁子=eh/2Mc;自旋量子数(I)不为零的核都具有磁矩,)1(2IIh)1(IIg核磁矩:79270.21H70216.013C10:14:58讨论:(1)I=0的原子核16O;12C;22S等,无自旋,没有磁矩,不产生共振吸收(2)I=1或I0的原子核I=1:2H,14NI=3/2:11B,35Cl,79Br,81BrI=5/2:17O,127I这类原子核的核电荷分布可看作一个椭圆体,电荷分布不均匀,共振吸收复杂,研究应用较少;(3)I=1/2的原子核1H,13C,19F,31P原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有机化合物的主要组成元素。10:14:58H0m=1/2m=-1/2m=1m=-1m=0m=2m=1m=0m=-1m=-2I=1/2I=1I=2zzz1PH0HE2=+H0E=E2-E1=2H0E1=-H010:14:58二、核磁共振现象nuclearmagneticresonance自旋量子数I=1/2的原子核(氢核),可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外磁场H0中时,相对于外磁场,有(2I+1)种取向:氢核(I=1/2),两种取向(两个能级):(1)与外磁场平行,能量低,磁量子数m=+1/2;(2)与外磁场相反,能量高,磁量子数m=-1/2;10:14:58(核磁共振现象)两种取向不完全与外磁场平行,=54°24’和125°36’相互作用,产生进动(拉莫进动)进动频率0;角速度0;0=20=H0磁旋比;H0外磁场强度;两种进动取向不同的氢核之间的能级差:E=H0(磁矩)10:14:58三、核磁共振条件conditionofnuclearmagneticresonance在外磁场中,原子核能级产生裂分,由低能级向高能级跃迁,需要吸收能量。能级量子化。射频振荡线圈产生电磁波。对于氢核,能级差:E=H0(磁矩)产生共振需吸收的能量:E=H0=h0由拉莫进动方程:0=20=H0;共振条件:0=H0/(2)10:14:58共振条件(1)核有自旋(磁性核)(2)外磁场,能级裂分;(3)照射频率与外磁场的比值0/H0=/(2)10:14:58能级分布与弛豫过程不同能级上分布的核数目可由Boltzmann定律计算:磁场强度2.3488T;25C;1H的共振频率与分配比:kThkTEkTEENNjijiexpexpexp两能级上核数目差:1.610-5;MHz00.10024.323488.21068.2280B共振频率999984.0KKJssJ2981038066.11000.10010626.6exp1123634jiNN弛豫(relaxtion)——高能态的核以非辐射的方式回到低能态。饱和(saturated)——低能态的核等于高能态的核。10:14:58讨论:共振条件:0=H0/(2)(1)对于同一种核,磁旋比为定值,H0变,射频频率变。(2)不同原子核,磁旋比不同,产生共振的条件不同,需要的磁场强度H0和射频频率不同。(3)固定H0,改变(扫频),不同原子核在不同频率处发生共振(图)。也可固定,改变H0(扫场)。扫场方式应用较多。氢核(1H):1.409T共振频率60MHz2.305T共振频率100MHz磁场强度H0的单位:1高斯(GS)=10-4T(特拉斯)10:14:58讨论:在1950年,Proctor等人研究发现:质子的共振频率与其结构(化学环境)有关。在高分辨率下,吸收峰产生化学位移和裂分,如右图所示。由有机化合物的核磁共振图,可获得质子所处化学环境的信息,进一步确定化合物结构。10:14:58四、核磁共振波谱仪nuclearmagneticresonancespectrometer1.永久磁铁:提供外磁场,要求稳定性好,均匀,不均匀性小于六千万分之一。扫场线圈。2.射频振荡器:线圈垂直于外磁场,发射一定频率的电磁辐射信号。60MHz或100MHz。10:14:583.射频信号接受器(检测器):当质子的进动频率与辐射频率相匹配时,发生能级跃迁,吸收能量,在感应线圈中产生毫伏级信号。4.样品管:外径5mm的玻璃管,测量过程中旋转,磁场作用均匀。10:14:58核磁共振波谱仪10:14:58样品的制备:试样浓度:5-10%;需要纯样品15-30mg;傅立叶变换核磁共振波谱仪需要纯样品1mg;标样浓度(四甲基硅烷TMS):1%;溶剂:1H谱四氯化碳,二硫化碳;氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;10:14:58傅立叶变换核磁共振波谱仪不是通过扫场或扫频产生共振;恒定磁场,施加全频脉冲,产生共振,采集产生的感应电流信号,经过傅立叶变换获得一般核磁共振谱图。(类似于一台多道仪)10:14:58超导核磁共振波谱仪:永久磁铁和电磁铁:磁场强度25kG超导磁体:铌钛或铌锡合金等超导材料制备的超导线圈;在低温4K,处于超导状态;磁场强度100kG开始时,大电流一次性励磁后,闭合线圈,产生稳定的磁场,长年保持不变;温度升高,“失超”;重新励磁。超导核磁共振波谱仪:200-400HMz;可高达600-700HMz;10:14:58内容选择:•第一节核磁共振基本原理principleofnuclearmagneticresonance•第二节核磁共振与化学位移nuclearmagneticresonanceandchemicalshift•第三节自旋偶合与自旋裂分spincouplingandspinsplitting•第四节谱图解析与结构确定analysisofspectrographandstructuredetermination•第五节13C核磁共振波谱13Cnuclearmagneticresonance结束