工程电磁场与电磁波习题解答(试用本)主编:丁君第一章1-1解:(1)zyxaaaBAvvvvv)125()93()32(3-++++-=+=zyxaaavvv712-+\BAvv3+=194491441=++(2)266cos26216coscoscos-=Þ´-=××=×=×qqqqCBCBCBCBCvvvvvvvvvBr方向的单位矢量为:26BBBbvvvv==Cr在Bs方向的分矢量为:33cos(34)1313xyzCbBaaaq·=-=-+-vvvvvv(3)191321coscoscos-=×==×qqqBABABABAvvvvvvvv113πarccos()219qÞ=-(4)zyxaaaCBvvvvv553-+-=-CBvv-的单位矢量为:zyxzyxaaaCBaaavvvvvvvv595595593553-+-=--+-1-2证明:欲证明三矢量A、B、C能构成一个三角形,则须证出三个线性无关的非零矢量位于同一平面上。则有:0)(=´·CBA即0=zyxzyxzyxCCCBBBAAA代入得0000431110624431213=-=---=zyxzyxzyxCCCBBBAAA即得证1-3解:(1)4321FFFFF+++=合代入数据得xyF2aa=-vv合(2)514=+=合F(3)合力方向与单位矢量yxaavv5152-方向相同,与x轴成1arcsin5-1-4证明:设矢量rr的终点在A.B.C构成的平面上,则:(),(),()rarbrc---vvvvvv在此平面上,则必有不为0的实数,,mnp满足:()()()0mranrbprc-+-+-=vvvvvv所以得:pnmcpbnamr++++=vvvv,pnm,,为实数1-5解:设A点的坐标为),(11yx,B点坐标为),(22yx则av=),(11yx,bv=),(22yx有题意得121211xxyyxxyy--=--Þ则过A),(11yx,B),(22yx点的方程为()111212yxxxxyyy+---=Þ1-6解:欲使,ABvv互相垂直,则有0AB·=vv则有8220ABa·=--=vv得3=a1-7解:矢量Av与坐标轴的夹角分别为:72cos76cos7343693cos==-===++==AAAAAAzyxgba其中gba,,分别为矢量Av与三个坐标轴方向夹角。1-8(1)证明:1111()()2222ABBCCACABA´+´+´+-´-vvvvvvvvvv1111110222222ABBCCABCCAAB=´+´+´-´-´-´=rrvvvvvvvvvv所以:四个面的面积之和为0(2)可以推广到任何闭曲面1-9解:(1)2739xyzABaaa´=---vvvvv(2)()(2739)(42)111xyzxyzABCaaaaaa´·=---·-+=-vvvvvvvvv(3)()()111ABCABC·´=´·=-vvvvvv(4)AB´vv是垂直于Av、Bv所在平面的矢量,有:2739xyzABaaa´=---vvvvv于是垂直于Av和Bv所在平面的单位矢量为:913()919191nxyzABaaaaAB´=±=++´vvvvm1-10证明:2'')()(cbabaaccbabacbaaccb´·´´´=´·´´´·´=´利用公式)()()(BACCABCBA·-·=´´可得:cbaacbacbaacbaaacbbacacbabaaccb´·=´·´·=´··´-·´=´·´´´=´222'')()()()(])[()()(则acbaacbacbcbaacbacb=´··´·´´·=´·´'''''同理可证'''''cbaacb´·´=,'''''cbabac´·´=1-11解:(1)(2)(2)(5)xyzSyaxaa=++-vvvv(2)11)3,2,1(-=T,425xyzSaaa=+-vvvv,164S2535=++=v,Þ425()33535SxyzSaaaaS=±=±+-vvvvvv1-12解:电场线的切线方向为电场强度方向,则22d(21)dx(42)dy4Elxyxxyycf=·=-+-=--++òòvv即电场线方程为cyyxx++--4221-13解:(1)3'3'3'1111()()2()()2()()2()222xyzRxxaRyyaRzzaR---Ñ=-·--·--·-vvv3'3'3'()()()()()()xyzRxxaRyyaRzza---=-·--·--·-vvv'3'3'3'1111()[()2()()2()()2()]222xyzRxxaRyyaRzzaR----Ñ=--·---·---·--vv=3'3'3'()()()()()()xyzRxxaRyyaRzza----·--·--·-vvv则有:)1()1('RR-Ñ=Ñ(2))()(RRfRfѶ¶=Ñ,)()(''RRfRfѶ¶-=Ñ-又)()('RR-Ñ=Ñ所以有)()('RfRf-Ñ=Ñ`1-14解:设xzyx22+=f则2(22)()(2)xyzxyzaxaxafÑ=+++vvv(2,1,2)ˆˆ44yzaaf-Ñ=+1-15解:两个曲面的夹角实为它们的梯度的夹角的较小的一个1222xyzxayazafÑ=++vvv424xyzaaa=-+vvv222xyzxayaafÑ=+-vvv42xyzaaa=--vvv1212cosffffq\Ñ×Ñ=ÑÑ(1644)8cos621321q+-Þ==08arccos,090321qqÞ=1-16解:(1)2222248AxxyxyzÑ×=++v(2)11122222111222(2x2xy48xyz)dxdydz0---++=òòò(3)Z1zZ1zSZZ22SSAds(A)adxdy(A)(a)dxdy==×=×+×-òòòòòrvvvÑ上下y1yy1yyy22SS(A)(a)dxdz+(A)adxdz==+×-×òòòòvv左右x1xx1xxx22SS(A)adydz(A)(a)dydz==+×+×-òòòòvv前后又z1z1zz22(A)(A)==-=Qy1y1yy22(A)(A)==-=x1x1xx22(A)(A)==-=sAds0\×=òvvÑ所以可以得到:vsAdvAdsÑ××=×òòvvÑ即为高斯定理。1-17解:(1)设此单位立方体上端开放55xyzxyzaaaFzaxyaxzaxyzFxFyFz¶¶¶Ñ´==×+×-¶¶¶vvvvvvv1sSSSz211SSyy22Fds5xzdxdy+zdxdyzdxdz-(5xydxdz5xydxdz0Ñ´×=×+×++×=òòòòòòrv下前后=-左右=-=())()(2)2llFdl=(5xyzdxydyyzdz)××++×òòvvÑÑdz=0=22l1l2l3l4ydy5xyzdxydy5xyzdx+×++×òòòò11112222221111222255ydy()xdxydyxdx044----=+-++=òòòò其中:1l:y从12到-12,12xz==;2l:x从12到-12,11,22yz=-=3l:y从-12到12,11,22xz=-=;4l:x从-12到12,12yz==所以:slFdsFdlÑ´×=×òòvvvrÑ即:斯托克斯定理成立1-18解:(1)48EaRsinjqÑ´=vv96cosERqÑ·=v(2)20π2π200ˆsindd24sincosdd0RssEsERaRqqjqqqj·=×==òòòòvvvÑÑd(3)2ππk2v00022π096cosEdVRsindRddRsin48R2π02qqqjqÑ·==·=òòòòv1-19解:(1)4xABa+=vvv(2)3412AB×=--=-vv(3)(22)(13)(62)48xyzyzABaaaaa´=-+--+--=--vvvvvvv(4)842455zyzynaaaaABaAB--+´=±=±=´rrrrrrrmrr(5)cosABABq×=××vvvv1cos||||21ABABq×==-×vvvv所以:1ππ-arccos(0)221qq=(6)标投影:2cos6Aq=-v矢投影:1cos(2)3xyzBAaaaBq×=--+vvvvvv1-20解:(1)从P到Q的矢量距离(25)(312)(0)315xyzxyPQaaaaa=-+--+=--uuurvvvvv(2)2341592=+=PQ(3)PQuuur与xy平面平行(4)P点坐标(5,12,1),Q点坐标(2,-3,1)1-21解:由,,ABCvvv三矢量可知:BAC=+vvv所以:,,ABCvvv构成三角形。且0AC·=vv则有:AC^vv所以该三角形为直角三角形。所以直角三角形的面积为:111555202222xyzSABaaa=´=--=ururvvv1-22解:(1)59rzABaaaj+=+-vvvvv(2)6201214AB·=+-=vv(3)31172rzABaaaj´=-+vvvvv(4)AB´vv是垂直于Av,Bv所在平面的矢量,即为AB平面的法向量则平面的单位法向量为1311721254rz(aaa)j±-+vvv(5)A,B之间夹角为17cos529ABABq·==·vvvv,29751arccos=q(6)50A=v,29B=v则Ar在Br的标投影为:1429Acosq=vAr在Br的矢投影为:1424329rzAcosB(aaa)Bjq=++vvvvvv1-23解:(1)23171010RABaaaqj-=-+-vvvvv(2)7AB·=-vv(3)102912RABaaaqj´=++vvvvv(4)AB´vv是垂直于AB所在平面的矢量,即为AB平面的法向量则平面的单位法向量为11029121085R(aaa)qj±++vvv(5)A,B之间夹角为17cos92ABABq·==·vvvv,2791arccos=q第二章2-1解:(1)36102ππ2121100010sinddd6.2810VQdvRRCRrqqj---=×=×=´òòòò(2)00620310.96π272210280.9π10dsinddd7.2910VQvRRCRrqqj--=×=×=´òòòò2-2解:z2Q(0,0,1)x0(1,0,-1)1Q(0,0,0)22222000211(2)4π54π55205πxzRxzaaQQQEaaaeee-=×=×=-vvrvvv111001()4π2282πxzxzaaQQEaaee-=×=-vvvvv(1)0zE=时,215108QQ=-(2)0xE=时,215104QQ=-2-3解:由题意可知Ev只有Z方向,区域内任一点到(0,0,1)处的Z向场强为:22200dd1dd1sin4π14π11SSrrrrdErrrrqrqaee××=·×=·×+++v2π122000-92π1220002122001dd4π115101dd4π11d2(1)1SzSrErrrrrrrrrrrrrqeqere=··++´=··++=++òòòòò=012(ln(12))πln(1+2)/49.27/222Szzza=90aVmaVmreéù+--=êúëûvvv2-4解:(1)0.7200d20.574π4πARAqqalVRRfee¥¥¥===òv(2)0.50.50.720.700d8.234π4πRqqaRVRRfee==-=-òv(3)设零电位在0R则有00210015d14.44πRRRqalrRe-=·=´òv得01.53Rm=则1.5320.701d11.164πqrVrfe==ò2-5解:(1)22(1,2,3)5020|50123204380pxyzyf=+=´´´+´=(2)(1.2.3)()|ppxyzpEaaaxyzffff¶¶¶=-Ñ=-++¶¶¶vvv22(1.2.3)[100(5040)50]|xyzpxyzaxzyaxya=-+++vvv600230100xyzaaa=---vvv(3)00()yxzEEEExyz