机器学习介绍(英文版:备注里有中文翻译)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MachineLearning2020年11月23日星期一Machinelearning,asabranchofartificialintelligence,isgeneraltermsofakindofanalyticalmethod.Itmainlyutilizescomputersimulateorrealizethelearnedbehaviorofhuman.2020年11月23日星期一2020年11月23日星期一1)Machinelearningjustlikeatruechampionwhichgohaughtily;2)Patternrecognitioninprocessofdeclineanddieout;3)Deeplearningisabrand-newandrapidlyrisingfield.theGooglesearchindexofthreeconceptsince20042020年11月23日星期一Theconstructedmachinelearningsystembasedoncomputermainlycontainstwocoreparts:representationandgeneralization.Thefirststepfordatalearningistorepresentthedata,i.e.detectthepatternofdata.Establishageneralizedmodelofdataspaceaccordingtoagroupofknowndatatopredictthenewdata.Thecoretargetofmachinelearningistogeneralizefromknownexperience.Generalizationmeansapowerofwhichthemachinelearningsystemtobelearnedforknowndatathatcouldpredictthenewdata.SupervisedlearningInputdatahaslabels.Thecommonkindoflearningalgorithmisclassification.Themodelhasbeentrainedviathecorrespondencebetweenfeatureandlabelofinputdata.Therefore,whensomeunknowndatawhichhasfeaturesbutnolabelinput,wecanpredictthelabelofunknowndataaccordingtotheexistingmodel.2020年11月23日星期一UnsupervisedlearningInputdatahasnolabels.Itrelatestoanotherlearningalgorithm,i.e.clustering.Thebasicdefinitionisacoursethatdividethegatherofphysicalorabstractobjectintomultipleclasswhichconsistofsimilarobjects.2020年11月23日星期一Iftheoutputeigenvectormarkscomefromalimitedsetthatconsistofclassornamevariable,thenthekindofmachinelearningbelongstoclassificationproblem.Ifoutputmarkisacontinuousvariable,thenthekindofmachinelearningbelongstoregressionproblem.2020年11月23日星期一ClassificationstepFeatureextractionFeatureselectionModeltrainingClassificationandpredictionRawdataNewdata2020年11月23日星期一Featureselection(featurereduction)CurseofDimensionality:Usuallyrefertotheproblemthatconcernedaboutcomputationofvector.Withtheincreaseofdimension,calculatedamountwilljumpexponentially.Corticalfeaturesofdifferentbrainregionsexhibitvarianteffectduringtheclassificationprocessandmayexistsomeredundantfeature.Inparticularafterthemultimodalfusion,theincreaseoffeaturedimensionwillcause“curseofDimensionality”.2020年11月23日星期一PrincipalComponentAnalysis,PCAPCAisthemostcommonlineardimensionreductionmethod.Itstargetismappingthedataofhighdimensiontolow-dimensionspaceviacertainlinearprojection,andexpectthevarianceofdatathatprojectthecorrespondingdimensionismaximum.Itcanusefewerdatadimensionmeanwhileretainthemajorcharacteristicofrawdata.2020年11月23日星期一Lineardiscriminantanalysis,LDAThebasicideaofLDAisprojection,mappingtheNdimensiondatatolow-dimensionspaceandseparatethebetween-groupsassoonaspossible.i.e.theoptimalseparabilityinthespace.Thebenchmarkisthenewsubspacehasmaximumbetweenclassdistanceandminimalinter-objectdistance.2020年11月23日星期一Independentcomponentanalysis,ICAThebasicideaofICAistoextracttheindependencesignalfromagroupofmixedobservedsignaloruseindependencesignaltorepresentothersignal.2020年11月23日星期一Recursivefeatureeliminationalgorithm,RFERFEisagreedyalgorithmthatwipeoffinsignificancefeaturestepbysteptoselectthefeature.Firstly,cyclicorderingthefeatureaccordingtotheweightofsub-featureinclassificationandremovethefeaturewhichrankatterminalonebyone.Then,accordingtothefinalfeatureorderinglist,selectdifferentdimensionofseveralfeaturesubsetfronttoback.Assesstheclassificationeffectofdifferentfeaturesubsetandthengettheoptimalfeaturesubset.2020年11月23日星期一ClassificationalgorithmDecisiontreeDecisiontreeisatreestructure.Eachnonleafnodeexpressesthetestofafeaturepropertyandeachbranchexpressestheoutputoffeaturepropertyincertainrangeandeachleafnodestoresaclass.Thedecision-makingcourseofdecisiontreeisstartingfromrootnode,testingthecorrespondingfeaturepropertyofwaitingobjects,selectingtheoutputbranchaccordingtotheirvalues,untilreachingtheleafnodeandtaketheclassthatleafnodestoreasthedecisionresult.2020年11月23日星期一NaiveBayes,NBNBclassificationalgorithmisaclassificationmethodinstatistics.Ituseprobabilitystatisticsknowledgeforclassification.Thisalgorithmcouldapplytolargedatabaseandithashighclassificationaccuracyandhighspeed.2020年11月23日星期一Artificialneuralnetwork,ANNANNisamathematicalmodelthatapplyakindofstructurewhichsimilarwithsynapseconnectionforinformationprocessing.Inthismodel,amassofnodeformanetwork,i.e.neuralnetwork,toreachthegoalofinformationprocessing.Neuralnetworkusuallyneedtotrain.Thecourseoftrainingisnetworklearning.Thetrainingchangethelinkweightofnetworknodeandmakeitpossessthefunctionofclassification.Thenetworkaftertrainingapplytorecognizeobject.2020年11月23日星期一k-NearestNeighbors,kNNkNNalgorithmisakindofclassificationmethodbaseonlivingexample.Thismethodistofindthenearestktrainingsampleswithunknownsamplexandexaminethemostofksamplesbelongtowhichclass,thenxbelongstothatclass.kNNisalazylearningmethod.Itstoressamplesbutproceedclassificationuntilneedtoclassify.Ifsamplesetarerelativelycomplex,itmaybeleadtolargecomputationoverhead.Soitcannotapplytostronglyreal-timeoccasion.2020年11月23日星期一supportvectormachine,SVMMappingthelinearlyinseparabl

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功