主动配电网文献综述-初稿

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-主动配电网文献综述摘要:分布式电源(distributedgeneration,DG)和电动汽车的大量接入、智能家居的普及、需求侧响应的全面实施等显著增强了配电系统规划与运行的复杂性,同时,未来的配电网对规划与运行的优化策略提出了更高的要求。作为未来配电网的一种发展模式,主动配电网(activedistributionnetwork,ADN)开始受到人们的关注。本文主要探讨总结了主动配电网的国内外现状,主动配网网工作原理,主动配电网的运行方式、标准、对应的国内外指标及计算方法以及主动配电网的算法研究。关键词:主动配电网,分布式发电,潮流算法,粒子群算法,混合算法0引言近年来,全球范围内气候变暖及极端天气事件日益频发,严重威胁着人类社会的可持续发展。根据国际发展援助研究协会(DARA)数据,在过去10年间,气候变化每年平均造成超过1.2万亿美元经济损失,约占全球GDP的1.6%。到2030年,该比例预计达到3.2%[1]。在诸多因素中,人类过度排放温室气体被认为是导致全球气候变化的重要原因[1,2]。为应对上述挑战,英国政府于2003年首次提出了低碳经济(low-carboneconomy)的发展理念:倡导通过技术创新、产业转型、新能源开发等多种手段提高能源供应多样性,降低对化石能源的依赖以减少碳排放,最终达到经济社会发展与生态环境保护双赢的理想目标[2]。构建低碳经济模式,推进“经济-能源-环境”协调可持续发展此后逐渐成为世界各国的普遍共识。我国在2009年明确提出了“2020年非化石能源占一次能源总消费量的15%,单位GDP的CO2排放比2005年下降40%~45%”的低碳发展战略目标[3],并在“十二五规划”中制订了“2015年非化石能源占一次能源消费比重达到11.4%;单位GDP能源消耗降低16%,单位GDP二氧化碳排放降低17%”的阶段性任务。以化石能源为主导的电源结构使得电力工业成为我国国民经济中最大的CO2排放部门。据权威统计,2012年我国电力行业碳排放量达到3.85亿吨,约占全国总碳排放量的50%[4],且近年来呈现加速增长趋势。因此,推动电力工-2-业低碳化成为我国实现上述节能减排与生态文明目标的必然选择。发展低碳电力系统的根本任务是要形成稳定的低碳电能供应机制,其关键在于对可再生能源的有效开发与利用。对此,当前主要存在两种基本思路[4]:一是大力发展长距离、大容量、低损耗的跨区输电线路(如特高压输电)以实现可再生能源资源在更大区域范围内优化配置;二是从配用电环节入手,建立协调关联分布式可再生能源发电(DistributedRenewableEnergyGeneration,DREG)、配电网络与终端用电的集成供电系统,实现对可再生能源的就地消纳与利用。较之前者,分布式配用电系统具有建设周期短、投资成本低、运行灵活的优点,且抗风险能力更强,因此近些年在国内外获得广泛关注[5-7]。在传统配电网中,电力潮流一般由上端变电站单一流向负荷节点,其运行方式和规划准则相对简单。然而,分布式能源(DistributedEnergyResource,DER)的规模化接入与应用将对系统潮流分布、电压水平、短路容量等原有电气特性造成显著影响。而传统配电网在设计阶段并未考虑上述因素,因此难以满足低碳经济背景下高渗透率可再生能源发电接入与高效利用的要求。在此背景下,国外学者在2008年国际大电网会议(CIGRE)首次提出了主动配电网(ActiveDistributionNetwork,ADN)的概念[8],旨在解决配电侧兼容大规模间歇式可再生能源,提升绿色能源利用率以及一次能源结构等问题。与主要关注用户侧的微电网(Micro-Grid,MG)不同,ADN主要面向由电力企业管理的公共配电网。它是智能配电网技术发展到高级阶段的产物,是一种兼容电网、分布式发电(DistributedGeneration,DG)及需求侧管理等多类型技术的全新开放式配电系统体系结构。ADN的技术理念将系统运行中的信息价值及电网-用户之间的互动能力提升至一个新高度,强调在整个配电网层面内借助主动网络管理(ActiveNetworkManagement,ANM)实现对各类可再生能源的主动消纳及多级协调利用,最终促进电能低碳化转变及电网资产利用效率的全方位提高[9,10]。相比管制背景下的传统配电网,ADN无论在技术特性上,或是面临的外部市场环境方面,均有着自身鲜明的特点;而我国电力工业低碳化发展的要求又为ADN的应用实施赋予了更多的内涵。ADN应该发挥何种作用以支撑节能减排目标的实现?对此,又需要采用怎样的科学规划方法才能确保企业投资经济效益与社会环境效益的相协调?这是当前亟待回答的重要命题。因此,研究与低碳经济相适应的ADN规划方法与发展模式,无疑具有重要的理论、战略和现实意义。本文将介绍主动配电网的国内外现状,主动配网网工作原理,主动配电网的运行方式、标准、对应的国内外指标及计算方法以及主动配电网的算法研究。-3-1国内外技术现状主动配电网(AND)是近几年来才提出的新名词。最早美国电力可靠性技术解决方案协会(CERTS)提出了“微网”的概念,微网是由微电源和负荷共同组成的系统,可同时提供电能和热量,其组成结构较ADN简单,也可以说是ADN的一种特殊形式。1.1国外技术现状目前对ADN的研究处于领先地位的主要有北美、欧盟和日本等。美国CERTS己在美国电力公司Walnut的微网测试基地成功验证了微网的初步理论;欧盟推出了“Microgrids”和“MoreMicrogrids”个主要项目,德国太阳能研究所建成的微网实验室规模最大,容量达到200kVA,该研究所还在其实验平台设计安装了简单的能量管理系统;日本常规能源较为匿乏,在可再生能源幵发和利用上投入较大,已在国内建立了多个微网项目,其微网实验系统的开发亦处于世界领先水平。据统计,截至2013年,世界范围内共有包括美国、澳大利亚、日本、意大利、德国、英国等在内的11个国家和地区开展了24个具有创新性的ADN项目[11]。其中,欧盟开展了ADINE、ADDERSS、GRID4EU等代表性的ADN示范项目:①ADINE项目主要以配电网络对高渗透率DG的开放兼容为目标,重点研究内容包括:智能配电自动化、ICT和ANM控制技术等,项目展示了可使DG接入更加方便的解决方案,提出了可适应大规模DG接入的系统保护配置、电压控制、故障穿越和防孤岛等策略。②ADDRESS项目于2008年开始实施,历时4年,11个国家参与,重点研究智能配电网理念下以“主动需求(AD)”为核心的用户侧需求响应技术。该项目建立了用于实时数据处理的大型、开放式电力通信网络,大规模实验并应用实时激励等需求侧管理技术,验证了AD对系统效益的积极作用。③GRID4EU项目由6家欧盟国家配电系统运营商共同参与,预计2015年结束,总资金约5000万欧元。项目主要涉及智能配电网的规划、运行及控制关键技术、标准制定,以及成本—效益分析等方面内容,相关成果要求在欧洲范围内具有可扩展性和可重复性。1.2国内技术现状我国对ADN的研究较其他国家相对落后,研究热点主要集中在DG本身的控制以及DG规划和运行等方面,对DG的并网技术标准和并网规程方面尚有欠缺,这极大地限制了分布式发电技术的应用和推广。但是我国大力支持可再生能源的发展,在西部和沿海分别建立了光伏电站和风力发电场等,估计2020年将达到20GW~30GW[11]。目前国内在密切跟踪主动配电网技术前沿的同时也在积极进行试点示范工-4-程建设,2012年开展了863项目“主动配电网的间歇式能源消纳及优化技术研究与应用”研究,并在广东电网进行示范。2014年起,“多源协同的主动配电网运行关键技术研究及示范”分别在北京、福建、贵州开展研究与示范建设。2主动配电网工作原理根据CIGREC6.11的定义[12],ADN是采用主动管理分布式电源、储能设备和客户双向负荷的模式,具有灵活拓扑结构的公用配电网,其基本构成模式如图1所示。图中,各类DG(如风电、光伏等)和储能单元通过电力电子元件转换成相应的交流或直流模式,再经过升压变压器并入系统;通信、自动化及其他相关电气设备以适当的连接方式实现与电力网的紧密集成;此外,用户侧配以智能电表为代表的先进计量装置(AdvancedMeteringInfrastructure,AMI),用于实现对用电信息的实时采集及电网-用户之间的双向互操作。图1主动配电网的典型构成模式ADN技术的“主动性”特征主要体现在系统运行控制方式上。在传统配电网中,用电活动属于“被动”要素,即使系统中含有DG,也主要面向电能就地消纳,运行者通常不会对稳态运行的电气设备进行主动控制。而在ADN下,通过先进的ICT及自动化技术,可以对区域内供应侧与需求侧资源实施主动管理,以实现系统特定运行目标(如网损、资产利用效率或绿色能源消纳等)的最优。正是由于以上原因,ADN在技术标准、管理模式、网络结构、潮流特性及模拟-5-计算要求等诸多方面均与传统配电网存在显著差异,见表一[13]。表一AND与传统配电网的主要差异传统配电网AND技术标准单一的动态的管理模式集中式分散式网络结构固定的灵活的潮流特性单向的双向的模拟技算平均的精确的传统配电网下缺少必要的技术与管理手段,不具备提供差异化供电服务的能力,因此相关技术标准单一;而ICT等高级智能技术的引入使得ADN的运行状态灵活可变,能够满足定制电力要求,其对应的技术标准是动态多元的。在管理模式上,基于智能通信平台,ADN可实现对需求侧资源(DemandSideResource,DSR)的整合及对系统资产的分散式管理。此外,相对传统配电网,ADN的网络结构更加灵活,具有有源、网状、并网方式可选等新特点,并由此造成系统潮流特性由单向固定向着双向不确定方向的巨大转变。在模拟计算方面,传统配电网一般只需对典型系统断面进行确定性模拟即可满足规划或运行任务的基本要求,而ADN则需采取分布并行式的建模方法,细致考虑时间窗口内的各类不确定因素,实施精确化的运行模拟。3主动配电网的运行方式、标准、对应的国内外指标及计算方法3.1集中式图2为集中式控制的示意图,由各测量点测得的电压、潮流和设备状态数据均上送到配电网中央控制器(distributionnetworkcentralcontroller,DNCC),中央控制器通过对各个DG分配有功和无功指令以及对其他设备发送命令来协调控制配电网络中的所有设备,并能够将配电网的电压和频率保持在合理的范围内。图中:PEDG表示逆变器接口的DG;PEC表示电力电子变换装置;LC表示本地控制器;ESS表示储能系统。文献[14]提出了一种优化算法使DG和其他设备(包括稳压器、并联电容器、并联电抗器、静止无功补偿器等)之间进行协调配合,以保持各节点电压稳定。文献[15]提出了一种提高通信效率的方法,即在DG和电容器处放置一种远程终端单元(RTU),将所在节点的电压信息发送到-6-中央控制器,中央控制器根据此信息来调整系统中各稳压器的工作状态,最终将各节点电压稳定在允许范围内。文献[16]提出了一种基于统计学原理的状态估计算法,用来估算各节点的电压,并据此设置系统中的继电器和调整DG的出力来控制系统中电压的分布。但是集中式控制方式也有其不足之处,文献[17]对此进行了分析并总结以下结论:①可靠性较差,若中央控制器出现故障,整个网络将会崩溃;②送往中央控制器的数据量较大,有可能会在短时间内大量增加,超出控制器的处理能力;③集中控制方式在通信和数据处理方面投资会较高;④若要对控制算法进行调整,即使是微调也需要进行大量的测试工作;⑤对中央控制器进行维护时,需要关停整个系统。图2集中式控制的示意图3.2分散式为了遵循配电网中DG及负荷本身具有的分散特性,一些研究者提出了分散式控制方式,见图3。在分散控制方式下,配电网中的设备数量可以不受限制,本地控制器通过分析本地采集的数据与相邻设备送来的信息发出控制指令[18]。文献[19,20]通过采集本地的电

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功