JMatPro计算原理探讨动态物理模型的建立强大的金属材料数据库广泛且经实验验证的计算结果Modellingpropertiesandbehaviour:JMatPro材料性能模拟:JMatPro3.1ThermodynamicCalculations:Background热动力学计算原理∑∑∑∑∑−Ω++=iiiijvvjivjiieioiim)x(xxxxlogxRTGxGBasicequationfortheGibbsEnergyofamulti-componentSolutionPhase多元合金固溶相吉布斯自由能基本方程Gibbsenergyofpurecomponents纯组元的吉布斯自由能Idealentropy理想状态下的焓Interactionterms(Basedonpairwiseinteractions)相互作用项(基于两两之间相互作用)3.2PhaseTransformationKinetics:Model相转变动力学模型:(用于钢的)GeneralEquationforTTTcalculationisafterKirkaldyetal.(TTT计算的一般方程:Kirkaldyetal.)2(1)/32/301(,)(1)xqxxdxxTDTxxτα−=∆−∫α=β2(G-1)/2,βisanempiricalcoefficient,GistheASTMgrainsize,Disaneffectivediffusioncoefficient,∆Tistheundercooling,qisanexponentdependentontheeffectivediffusionmechanismandxisthefractiontransformed.(α=β2(G-1)/2,β是一个经验系数,G是晶粒尺寸,D是有效扩散系数,∆T是过冷度,q是一个取决于有效扩散机制的指数。X是转变的百分数)3.2.1Martensitictransformations马氏体转变0.11101001000100001000000.1110100100010000100000Exp.timeatnose(s)Calc.timeatnose(s)ASMatlasEnsteels01002003004005006000100200300400500600ExperimentalTemperature(oC)CalculatedTemperature(oC)MSM50M903.2.2PhaseTransformations(TTT/CCTdiagrams)相转变(TTT/CCT相图)CalculatedTTTdiagramsforU720andU720LIwithexperimentalresultsofKeefeetal.superimposed.对U720和U720LI所计算的TTT曲线与Keefeetal.的实验结果比较0.111010010000.11101001000Experimentalcoarseningrates(nm/hour1/3)Calculatedcoarseningrates(nm/hours1/3)Ni-AlNimonic80ANimonic90Nimonic105Nimonic115Nimonic263PE11PE16PK33Udimet700IN-7383.2.3PhaseTransformations(γ′/γ″coarsening)相转变(γ′/γ″晶粒的长大)晶粒的计算长大率与实验得到的长大率的比较3.2.2PhaseTransformations(TTT/CCTdiagrams)相转变(TTT/CCT相图)100011001200130014001500160017001800190020000.010.1110100100010000Time(hours)Temperature°F718σδγ”γ’71860080010001200110100100010000Time(hrs)Temperature(Pμσ[33]RR2071CalculatedTTTdiagramforthesinglecrystalalloyRR2071withexperimentalresultsofRaeatal.superimposed3.2.2PhaseTransformations(TTT/CCTdiagrams)相转变(TTT/CCT相图)RR2071合金计算的TTT曲线与Raeatal.的实验结果的比较3.3BackgroundtoPropertyCalculations物理/热物理性能计算背景知识∑∑∑∑−Ω+=iiijvvjivjioii)x(xxxPxPPropertyofaSolutionPhase固溶相性能Propertyofpurecomponents纯组元时的性能Interactionterms(Basedonpairwiseinteractions)相互作用项(基于相与相两两之间相互作用)3.4MechanicalProperties机械性能Twotypesofstrengtheningmechanismaretreated.可考虑两种强化机制•Solidsolutionstrengthening.固溶强化•Particlestrengthening.第二相粒子强化3.4.1MechanicalProperties(PrecipitationHardening)机械性能(析出强化)Theyieldstrengthofanalloyhardenedbyγ’particlescanbegivenbytheequationbelowforsmallparticles微小γ‘粒子对合金的屈服强度的强化效果可用以下方程来衡量−τγγ+=ffdAb2MYSYS2/101YS0andYS1=yieldstressofthematrixandalloyM=Taylorfactorb=burger’svectorA=shapedependentconstantd=ppt.diameterτ=linetensionofadislocationf=volfractionγ'γ=APBenergyYS0和YS1=晶格屈服强度和合金屈服强度M=泰勒系数b=柏氏矢量A=形状因子常量d=析出粒子直径τ=位错的线张力f=γ‘体积分数γ=APB能量Forlargerparticlestheequationbelowcanbeused对于大尺寸的粒子,强化效果用下面方程来衡量2/12/1011d28.1bd2fM72.1YSYS−ωτγτ+=ω=constantthataccountsforrepulsionofdislocationswithintheprecipitates(essentiallyanempiricallyadjustableparameter).ω=一个表明析出物内部位错间斥力的常数(实质上是一个经验系数)3.4.1MechanicalProperties(PrecipitationHardening)机械性能(析出强化)0200400600800100002004006008001000Experimental0.2%ProofStress(MPa)Calculated0.2%ProofStress(MPa)AusteniticstainlesssteelsFerriticstainlesssteelsDuplexstainlesssteelsNickel-basedalloys3.4.2MechanicalProperties机械性能屈服强度的计算值与实验值的比较020040060080010001200140016000102030405060708090100ParticleDiameter(nm)0.2%ProofStress,MPa650癈700750癈800癈f=0.2201f=0.2019f=0.1783f=0.147320Cr-1.2Co-2.4Ti-1.5Al3.4.3ComparisonofMechanicalPropertiesforNi-basedSuperalloys镍基超合金机械性能实验与计算值的比较0200400600800100012001400160002004006008001000120014001600Exp.0.2%ProofStress(MPa)Calc.0.2%ProofStress(MPa)Nimonic80ANimonic90Nimonic105Nimonic263NimonicPE11NimonicPE16NimonicPK33Udimet700Udimet720Rene183.4.4AgeingResponseofaNi-basedSuperalloy(combiningcoarseningandpptnhardening)镍基超合金时效效应(综合晶粒长大和析出强化)02004006008001000120014000102030405060708090100ParticleDiameter(nm)0.2%ProofStress(MPa)78MelNimonic80A02004006008001000120014000.1110100100010000Time(hours)0.2%ProofStress(MPa)Calc78MelNimonic80A3.5HighTempMechanicalProperties(creep)高温机械性能(蠕变)GeneralCreepEquation蠕变一般方程nmoSFEADGbEσσε−=&A=MaterialconstantD=effectivediffusioncoeffSFE=stackingfaultenergyG=shearmodulusb=burger’svectorσ=appliedstressσo=backstressE=Young’smodulusm=3n=creepexponentA=材料常数D=有效扩散系数SFE=层错能G=剪切模量b=柏氏矢量σ=外加应力σo=背应力E=杨氏模量m=3n=蠕变指数0.0010.010.111010010000.0010.010.11101001000CalculatedCreepRates(10-7)s-1ExperimentalCreepRates(10-7)s-1Alloy625Alloy718Alloy800INCX750Mar246Mar-M002Nimonic75Nimonic80ANimonic90Nimonic105Nimonic115Udimet500Udimet520Udimet700Waspaloy3.5.1HighTempMechanicalProperties(creep)高温机械性能(蠕变)蠕变率的计算值与实验值的比较Asrupturestrengthisanalternativedesigncriterioninmanypracticalcases,thecalculationprocedurehasbeenextendedtoincludethispropertybyusinganinverserelationshipbetweenstressrupturelifeandsecondarycreeprate在许多实际情况中,断裂强度是一个可供选择的设计标准。我们的软件现在已经能够计算蠕变强度,这是通过利用蠕变断裂应力与蠕变率的对立关系间接得到的。3.5.2HighTempMechanicalProperties(creep)高温机械性能(蠕变)0200400600800100002004006008001000Exp.1000hrRuptureStrength(MPa)Calc.1000hrRuptureStrength(MPa)Incone