大学课件 高等数学 下学期 8-1(二重积分的概念与性质)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

柱体体积=底面积×高特点:平顶.柱体体积=?特点:曲顶.),(yxfzD1.曲顶柱体的体积一、问题的提出播放求曲顶柱体的体积采用“分割、求和、取极限”的方法,如下动画演示.步骤如下:用若干个小平顶柱体体积之和近似表示曲顶柱体的体积,xzyoD),(yxfzi),(ii先分割曲顶柱体的底,并取典型小区域,.),(lim10iiniifV曲顶柱体的体积设有一平面薄片,占有xoy面上的闭区域D,在点),(yx处的面密度为),(yx,假定),(yx在D上连续,平面薄片的质量为多少?2.求平面薄片的质量i),(ii将薄片分割成若干小块,取典型小块,将其近似看作均匀薄片,所有小块质量之和近似等于薄片总质量.),(lim10iiniiMxyo定义设),(yxf是有界闭区域D上的有界函数,将闭区域D任意分成n个小闭区域1,,2,n,其中i表示第i个小闭区域,也表示它的面积,在每个i上任取一点),(ii,作乘积),(iifi,),,2,1(ni,并作和iiniif),(1,二、二重积分的概念积分区域如果当各小闭区域的直径中的最大值趋近于零时,这和式的极限存在,则称此极限为函数),(yxf在闭区域D上的二重积分,记为Ddyxf),(,即Ddyxf),(iiniif),(lim10.积分和被积函数积分变量被积表达式面积元素(1)在二重积分的定义中,对闭区域的划分是任意的.(2)当),(yxf在闭区域上连续时,定义中和式的极限必存在,即二重积分必存在.对二重积分定义的说明:二重积分的几何意义当被积函数大于零时,二重积分是柱体的体积.当被积函数小于零时,二重积分是柱体的体积的负值.在直角坐标系下用平行于坐标轴的直线网来划分区域D,DDdxdyyxfdyxf),(),(dxdyd故二重积分可写为xyoD则面积元素为性质1当为常数时,k.),(),(DDdyxfkdyxkf性质2Ddyxgyxf)],(),([.),(),(DDdyxgdyxf(二重积分与定积分有类似的性质)三、二重积分的性质性质3对区域具有可加性.),(),(),(21DDDdyxfdyxfdyxf性质4若为D的面积,.1DDdd性质5若在D上),,(),(yxgyxf.),(),(DDdyxgdyxf特殊地.),(),(DDdyxfdyxf)(21DDD则有设M、m分别是),(yxf在闭区域D上的最大值和最小值,为D的面积,则性质6设函数),(yxf在闭区域D上连续,为D的面积,则在D上至少存在一点),(使得性质7(二重积分中值定理)DMdyxfm),(),(),(fdyxfD(二重积分估值不等式)例1不作计算,估计deIDyx)(22的值,其中D是椭圆闭区域:12222byax)0(ab.区域D的面积ab,在D上2220ayx,,12220ayxeee由性质6知,222)(aDyxede.222)(aDyxeabdeab解例2估计DxyyxdI16222的值,其中D:20,10yx.区域面积2,,16)(1),(2yxyxf在D上),(yxf的最大值)0(41yxM),(yxf的最小值5143122m)2,1(yx故4252I.5.04.0I解例3判断122)ln(yxrdxdyyx的符号.当1yxr时,,1)(0222yxyx故0)ln(22yx;又当1yx时,,0)ln(22yx于是0)ln(122yxrdxdyyx.解例4比较积分Ddyx)ln(与Ddyx2)][ln(的大小,其中D是三角形闭区域,三顶点各为(1,0),(1,1),(2,0).解三角形斜边方程2yx在D内有eyx21,故1)ln(yx,于是2)ln()ln(yxyx,因此Ddyx)ln(Ddyx2)][ln(.oxy121D二重积分的定义二重积分的性质二重积分的几何意义(曲顶柱体的体积)(和式的极限)四、小结思考题将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关.不同的是定积分的积分区域为区间,被积函数为定义在区间上的一元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域上的二元函数.思考题解答

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功