《统计分析与SPSS的应用(第五版)》课后练习答案(第9章)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。选择fore和phy两门成绩体系散点图步骤:图形旧对话框散点图简单散点图定义将fore导入Y轴,将phy导入X轴,将sex导入设置标记确定。接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单选择总计拟合线选择线性应用再选择元素菜单点击子组拟合线选择线性应用。分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。但回归直线的拟合效果都不是很好。2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。主要包括回归方程的拟合优度检验、显著性检验、回归系数的显著性检验、残差分析等。线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。一般包括回归系数的检验,残差分析等。4、请说明SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?向前、向后、逐步。5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。数据文件名为“粮食总产量.sav”。方法:采用“前进“回归策略。步骤:分析回归线性将粮食总产量导入因变量、其余变量导入自变量方法项选“前进”确定。如下图:(也可向后、或逐步)已输入/除去变量a模型已输入变量已除去变量方法1施用化肥量(kg/公顷).向前(准则:F-to-enter的概率=.050)2风灾面积比例(%).向前(准则:F-to-enter的概率=.050)3年份.向前(准则:F-to-enter的概率=.050)4总播种面积(万公顷).向前(准则:F-to-enter的概率=.050)a.因变量:粮食总产量(y万吨)模型摘要模型RR平方调整后的R平方标准估算的错误1.960a.922.9192203.301542.975b.950.9471785.901953.984c.969.9661428.736174.994d.989.987885.05221a.预测变量:(常量),施用化肥量(kg/公顷)b.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%)c.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%),年份d.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%),年份,总播种面积(万公顷)ANOVAa模型平方和自由度均方F显著性1回归1887863315.61611887863315.616388.886.000b残差160199743.070334854537.669总计2048063058.686342回归1946000793.4222973000396.711305.069.000c残差102062265.263323189445.789总计2048063058.686343回归1984783160.3293661594386.776324.106.000d残差63279898.356312041287.044总计2048063058.686344回归2024563536.0114506140884.003646.150.000e残差23499522.67530783317.423总计2048063058.68634a.因变量:粮食总产量(y万吨)b.预测变量:(常量),施用化肥量(kg/公顷)c.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%)d.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%),年份e.预测变量:(常量),施用化肥量(kg/公顷),风灾面积比例(%),年份,总播种面积(万公顷)系数a模型非标准化系数标准系数t显著性B标准错误贝塔1(常量)17930.148504.30835.554.000施用化肥量(kg/公顷)179.2879.092.96019.720.0002(常量)20462.336720.31728.407.000施用化肥量(kg/公顷)193.7018.1061.03723.897.000风灾面积比例(%)-327.22276.643-.185-4.269.0003(常量)-460006.046110231.478-4.173.000施用化肥量(kg/公顷)137.66714.399.7379.561.000风灾面积比例(%)-293.43961.803-.166-4.748.000年份244.92056.190.3234.359.0004(常量)-512023.30768673.579-7.456.000施用化肥量(kg/公顷)139.9448.925.74915.680.000风灾面积比例(%)-302.32438.305-.171-7.893.000年份253.11534.827.3347.268.000总播种面积(万公顷)2.451.344.1417.126.000a.因变量:粮食总产量(y万吨)结论:如上4个表所示,影响程度中大到小依次是:施用化肥量(kg/公顷),风灾面积比例(%),年份,总播种面积(万公顷)。(排除农业劳动者人数(百万人)和粮食播种面积(万公顷)对粮食总产量的影响)剔除农业劳动者人数(百万人)和粮食播种面积(万公顷)后:步骤:分析回归线性将粮食总产量导入因变量、其余4个变量(施用化肥量(kg/公顷),风灾面积比例(%),年份,总播种面积(万公顷))导入自变量方法项选“输入”确定。如下图:系数a模型非标准化系数标准系数t显著性B标准错误贝塔1(常量)-512023.30768673.579-7.456.000年份253.11534.827.3347.268.000总播种面积(万公顷)2.451.344.1417.126.000施用化肥量(kg/公顷)139.9448.925.74915.680.000风灾面积比例(%)-302.32438.305-.171-7.893.000a.因变量:粮食总产量(y万吨)粮食总产量回归方程:Y=-7.893X1+15.68X2+7.126X3+7.268X4-7.4566、一家产品销售公司在30个地区设有销售分公司。为研究产品销售量(y)与该公司的销售价格(x1)、各地区的年人均收入(x2)、广告费用(x3)之间的关系,搜集到30个地区的有关数据。进行多元线性回归分析所得的部分分析结果如下:ModelSumofSquaresDfMeanSquareFSig.Regression4008924.78.88341E-13ResidualTotal13458586.729UnstandardizedCodfficientstSig.BStd.Error(Constant)7589.10252445.02133.10390.00457X1-117.886131.8974-3.69580.00103X280.610714.76765.45860.00001X30.50120.12593.98140.000491)将第一张表中的所缺数值补齐。2)写出销售量与销售价格、年人均收入、广告费用的多元线性回归方程,并解释各回归系数的意义。3)检验回归方程的线性关系是否显著?4)检验各回归系数是否显著?5)计算判定系数,并解释它的实际意义。6)计算回归方程的估计标准误差,并解释它的实际意义。(1)模型平方和自由度均方F显著性1回归12026774.134008924.772.88.88341E-13b残差1431812.62655069.7154总计13458586.729(2)Y=7589.1-117.886X1+80.6X2+0.5X3(3)回归方程显著性检验:整体线性关系显著(4)回归系数显著性检验:各个回归系数检验均显著(5)略(6)略7、对参加SAT考试的同学成绩进行随机调查,获得他们阅读考试和数学考试的成绩以及性别数据。通常阅读能力和数学能力具有一定的线性相关性,请在排除性别差异的条件下,分析阅读成绩对数学成绩的线性影响是否显著。方法:采用进入回归策略。步骤:分析回归线性将MathSAT导入因变量、其余变量导入自变量确定。结果如下:已输入/除去变量a模型已输入变量已除去变量方法1Gender,VerbalSATb.输入a.因变量:MathSATb.已输入所有请求的变量。模型摘要模型RR平方调整后的R平方标准估算的错误1.710a.505.49969.495a.预测变量:(常量),Gender,VerbalSATANOVAa模型平方和自由度均方F显著性1回归782588.4682391294.23481.021.000b残差767897.9511594829.547总计1550486.420161a.因变量:MathSATb.预测变量:(常量),Gender,VerbalSAT系数a模型非标准化系数标准系数t显著性B标准错误贝塔1(常量)184.58234.0685.418.000VerbalSAT.686.055.69612.446.000Gender37.21910.940.1903.402.001a.因变量:MathSAT因概率P值小于显著性水平(0.05),所以表明在控制了性别之后,阅读成绩对数学成绩有显著的线性影响。8、试根据“粮食总产量.sav”数据,利用SPSS曲线估计方法选择恰当模型,对样本期外的粮食总产量进行外推预测,并对平均预测误差进行估计。采用二次曲线步骤:图形旧对话框拆线图简单个案值定义将粮食总产量导入线的表征确定结果如下:再双击上图“元素”菜单添加标记应用接下来:分析回归曲线估计粮食总产量导入因变量、年份导入变量,点击年份在模型中选择二次项、立方、幂点击“保存”按钮选择保存”预测值”继续确定。曲线拟合附注已创建输出03-MAY-201809:28:44注释输入数据F:\SPSS\薛薇《统计分析与spss的应用(第五版)》\PPT--jwd\第9章SPSS回归分析\习题\粮食总产量.sav活动数据集数据集1过滤器无宽度(W)无拆分文件无工作数据文件中的行数35缺失值处理对缺失的定义用户定义的缺失值被视作缺失。已使用的个案任何变量中带有缺失值的个案不用于分析。语法CURVEFIT/VARIABLES=lsclWITHnf/CONSTANT/MODEL=LINEARQUADRATICCUBICPOWER/PRINTANOVA/PL

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功