matlab编程基础(函数)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1数学软件Matlab——Matlab编程(函数)2本讲主要内容什么是函数文件如何编写函数文件递归函数函数参数的可调性局部变量与全局变量子函数函数句柄、内联函数、匿名函数3M文件根据调用方式的不同可以分为两类:Script:脚本文件/命令文件Function:函数文件Matlab编程直接输入文件名即可运行供其它M文件调用,通常带输入参数和输出参数4function输出形参列表=函数名(形参列表)%注释说明部分(可选)函数体语句(必须)第一行为引导行,表示该M文件是函数文件函数名的命名规则与变量名相同(必须以字母开头)当输出形参多于一个时,用方括号括起来函数文件函数文件一般格式函数文件名必须与函数名一致函数必须是一个单独的M文件5函数文件(f2cf.m):5(32)9cf例:将华氏温度转化为摄氏温度:编程示例clear;f=input('Pleaseinputf:');c=5*(f-32)/9;fprintf('c=%g\n',c);脚本文件(f2cs.m):functionc=f2cf(f)c=5*(f-32)/9;fprintf('c=%g\n',c);6函数文件举例function[a,b]=myswap(x,y)%swapxandya=y;b=x;例:交换两个变量的值myswap.m有两个输入参数和两个输出参数7functionprintyh(n)%打印杨辉三角形,本函数没有输出参数yh=1;disp(yh);ifn==1,return;endyh=[1,1];disp(yh);fork=3:nyh_old=yh;k2=ceil(k/2);fori=2:k2yh(i)=yh_old(i-1)+yh_old(i);endyh(k2+1:k)=yh(k-k2:-1:1);disp(yh);end函数文件举例例:打印杨辉三角形printyh.m没有输入参数和输出参数8函数调用的一般格式输出实参列表=函数名(输入实参列表)函数调用时,实参的顺序应与函数定义时形参的顺序一致实参与形参之间的结合是通过值传递实现的函数可以嵌套调用,即一个函数可以被其它函数调用,甚至可以被它自身调用,此时称为递归调用函数所传递的参数具有可调性,Matlab用两个永久变量nargin和nargout分别记录调用该函数时的输入实参和输出实参的个数函数调用91,1!(1)!,1nnnnn%函数文件myfactor.mfunctiony=myfactor(n)if(n=1)y=1;elsey=n*myfactor(n-1);end例:利用函数的递归调用计算n!递归函数举例10%main.m%clear;s=0;n=10;fori=1:ns=s+myfactor(i);endfprintf('s=%g\n',s)例:计算1!+2!+…+10!递归函数举例11%ex4nargin.mfunctiony=ex4nargin(a,b)if(nargin==1)y=a;elseif(nargin==2)y=a*b;end参数的可调性举例例:nargin和nargout的使用%ex4nargout.mfunction[p,q]=ex4nargout(a,b)if(nargout==1)p=a+b;elseif(nargout==2)p=a+b;q=a-b;end12函数通过输入和输出参数与其它M文件进行数据传递当函数调用完毕后,该函数文件中定义的所有局部变量都将被释放,即全部被清除如果在若干个M文件中,都把某个变量定义为全局变量,则这些函数将公共使用这一变量。所有函数都可以对它进行存取和修改操作函数文件中的变量都是局部的,即一个函数文件中定义的变量不能被另一个函数文件或其它M文件使用局部变量与全局变量定义全局变量是M文件间传递信息的一种手段13变量名列表中的各个变量用空格隔开,不能用逗号!在使用全局变量的所有M文件中,都要对其所使用的全局变量进行定义全局变量给函数间的数据传递带来了方便,但却破坏了函数对变量的封装,降低了程序的可读性,因而在结构化程序设计中,全局变量是不受欢迎的。特别是当程序较大,子程序较多时,全局变量将个程序调试和维护带来不便,故不提倡使用全局变量。global变量名列表全局变量的定义全局变量的定义14程序示例%ex4global.mclear;globalaba=1;b=3;y=mysquaresum(a,b);fprintf('a=%g,b=%g\n',a,b);z=myproduct(a,b);fprintf('a=%g,b=%g\n',a,b);%mysquaresum.mfunctionsquare_sum=mysquaresum(x,y)square_sum=x^2+y^2;a=x+y;%myproduct.mfunctionproduct=myproduct(x,y)globalaproduct=x*y;a=x+y;15子函数一个函数文件中可以含有一个或多个函数,其中第一个称为主函数,其它函数称为子函数子函数由function语句引导除了用global定义的全局变量外,所有函数中的变量都是局部变量,函数之间通过输入、输出参数进行数据传递调用一个函数时,Matlab会首先检查该函数是否为一个子函数主函数必须位于最前面,子函数出现的次序任意子函数只能被主函数和位于同一个函数文件中的其它子函数调用16子函数举例%ex4subfun.mfunction[avg,med]=ex4subfun(x)%主函数n=length(x);avg=mean(x,n);med=median(x,n);functiona=mean(x,n)%子函数,计算平均值a=sum(x)/n;functionm=median(x,n)%子函数,计算中值x=sort(x);ifrem(n,2)==1m=x((n+1)/2);elsem=(x(n/2)+x(n/2+1))/2;end17函数句柄函数句柄的定义fhandle=@函数名函数句柄,可以理解成一个函数的代号或别名,调用函数句柄就等价于调用该函数。@的作用就是将一个函数的函数句柄赋值给左边的变量例:f=@sin;y=f(pi/3)18内联函数内联函数的定义函数名=inline('函数表达式','变量1','变量2',...)MATLAB中的内联函数借鉴了C语言中的内联函数,使用内联函数可以减少调用的时间和空间开销。由于内联函数是储存于内存中而不是在M文件中,省去了文件访问的时间,加快了程序的运行效率。但内联函数只能定义一些简单的函数表达式。例:f=inline('x^2+y^2','x','y');y=f(2,3)19匿名函数匿名函数的定义fhandle=@(输入参数列表)运算表达式例:f=@(x,y)x^2+y^2;y=f(2,3)匿名函数(anonymousfunction)是MATLAB7.0版提出的一种全新的函数描述形式,和内联函数类似,可以让用户编写简单的函数而不需要创建M文件,因此,匿名函数具有inline函数的所有优点,并且效率比inline函数高。p=3;q=5;f=@(x,y)x^p+y^q;匿名函数支持变量替换20上机作业1、兔子繁殖问题:(Fibonaccinumber)假设每对兔子每月生出一对小兔,且新生的兔子满二个月后就能生育,那么从刚出生的一对小兔算起,12个月后总共有多少对兔子?三年后呢?试编写一个函数计算该题,输入为月数,输出为兔子对数。2、编写一个函数,要求实现以下功能当输入一个参数时,输出错误信息,并返回当输入两个或三个参数时,计算它们的阶乘的和21数学实验Matlab自定义函数22Matlab自定义函数的五种方式命令文件/函数文件+函数文件:多个M文件自定义函数的五种方式函数文件+子函数:一个M文件inline:无需M文件符号表达式+subs方式:无需M文件字符串+subs方式:无需M文件23%命令/函数文件:myfile1.mclearfort=1:10;y=mylfg(t);fprintf('%4d^(1/3)=%6.4f\n',t,y);end%函数文件:mylfg.mfunctiony=mylfg(x)y=x^(1/3);函数必须单独写一个文件!不能与命令文件写在同一个文件中!函数名与文件名必须一致!调用函数时要注意实参与形参的匹配!自定义函数方式(一)方式一:命令文件/函数文件+函数文件24自定义函数方式(二)%函数文件:funtry2.mfunction[]=funtry2()fort=1:10y=lfg2(t);fprintf('%4d^(1/3)=%6.4f\n',t,y);endfunctiony=lfg2(x)%%子函数y=x^(1/3);函数文件中可以定义一个或多个子函数,此时我们称该函数为主函数,子函数只能被主函数或同一个函数文件中的其它子函数调用!方式二:函数文件+子函数25f=inline('函数表达式','变量1','变量2',...)y=f(数值列表)代入的数值列表顺序应与定义时的变量名顺序一致例:自定义函数方式(三)方式三:inline+命令/函数文件inline命令可以用来定义一个内联函数调用方式:26这种函数定义方式是将f作为一个内部函数调用。其特点是:调用方式最接近于我们平时对函数的定义,使程序更具可读性。同时由于它是基于Matlab的数值计算内核的,所以它的运算速度较快,程序更有效率。这种定义方式的缺点:定义一个内联函数用去的内存空间比相同条件下其他的方法要大得多。该方法只能对数值进行代入,不支持符号代入,并且对于定义后的函数不能进行求导等符号运算。自定义函数方式(三)27自定义函数方式(三)28%函数文件:function[]=funtry3()lfg=inline('x.^(1/3)');%表达式两端的单引号不可缺少fid=fopen('myfile3.txt','w');fort=1:50;y=lfg(t);fprintf(fid,'%4d^(1/3)=%6.4f\n',t,y);endfclose(fid);ezplot(lfg,[0,50])diff(lfg,'x')自定义函数方式(三)X29注:对于在syms中已经定义过符号变量,在subs中进行替代时,单引号可以省略。但如果在syms后又被重新定义为其它类型,则必须加单引号,否则不可替换。syms定义一个符号表达式,用subs命令调用symsfx%定义符号f=1/(1+x^2);%定义符号表达式subs(f,'x',代替x的数值或符号)自定义函数方式(四)方式四:syms+subs30这种函数定义方法的一个特点是可以用符号进行替换该方法的缺点也是明显的:由于使用符号运算内核,运算速度会大大降低。自定义函数方式(四)31注:此处x的单引号不可省略。本函数方式可以代入字符,但字符不能参与运算,否则将自行转化成该字符的ASCII码运算,这与我们想要的结果可能会大相径庭。直接定义一个字符串,用subs命令完成调用。例:f='1/(1+x^2)'%定义字符串z=subs(f,'x',2)g=subs(f,'x','y^2')优点:占内存最少,定义格式方便自由。自定义函数方式(五)方式五:字符串+subs32subs命令的一种比较方便的调用方法:当所要替代的符号在调用前都已经有了数值定义,则可以直接调用:subs(f)例:自定义函数方式(五)关于subs的一个注解

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功