第一部分:1.下面函数与yx为同一函数的是()2.Ayx2.Byxln.xCye.lnxDye解:lnlnxyexex,且定义域,,∴选D2.已知是f的反函数,则2fx的反函数是()1.2Ayx.2Byx1.22Cyx.22Dyx解:令2,yfx反解出x:1,2xy互换x,y位置得反函数12yx,选A3.设fx在,有定义,则下列函数为奇函数的是().Ayfxfx.Byxfxfx32.Cyxfx.Dyfxfx解:32yxfx的定义域,且3232yxxfxxfxyx∴选C4.下列函数在,内无界的是()21.1Ayx.arctanByx.sincosCyxx.sinDyxx解:排除法:A21122xxxx有界,Barctan2x有界,Csincos2xx,故选D5.数列nx有界是limnnx存在的()A必要条件B充分条件C充分必要条件D无关条件解:nx收敛时,数列nx有界(即nxM),反之不成立,(如11n有界,但不收敛,选A.6.当n时,21sinn与1kn为等价无穷小,则k=()A12B1C2D-2解:2211sinlimlim111nnkknnnn,2k选C二、填空题(每小题4分,共24分)7.设11fxx,则ffx的定义域为解:∵ffx111111fxx112xxx∴ffx定义域为(,2)(2,1)(1,).8.设2(2)1,fxx则(1)fx解:(1)令22,45xtfttt245fxxx(2)221(1)4(1)5610fxxxxx.9.函数44loglog2yx的反函数是解:(1)4log(2)yx,反解出x:214yx;(2)互换,xy位置,得反函数214xy.10.lim12nnnn解:原式33lim212nnnn有理化.11.若105lim1,knnen则k.解:左式=5lim()510nknkneee故2k.12.2352limsin53nnnn=解:当n时,2sinn~2n∴原式=2532lim53nnnn=65.三、计算题(每小题8分,共64分)13.设sin1cos2xfx求fx解:22sin2cos21sin222xxxf221f.故221fxx.14.设fxlnx,gx的反函数1211xgxx,求fgx解:(1)求22():1xgxyx∴反解出x:22xyyx22xyy互换,xy位置得()22gxxx(2)lnln22fgxgxxx.15.设32lim8nnnana,求a的值。解:3323limlim1nnnnnaananalim,nnaanaee8ae,故ln83ln2a.16.求111lim12231nnnn解:(1)拆项,11(1)(1)kkkkkk111,2,,1knkk11112231nn1111112231nn111n(2)原式=lim11111limnnnnneen*选做题1已知222(1)(21)126nnnn,求22233312lim12nnnnnn解:222312nnn2222233311211nnnnnn且222312limnnnn31(21)1lim36nnnnnn222312lim1nnn3(1)(21)1lim6(1)3nnnnn∴由夹逼定理知,原式132若对于任意的,xy,函数满足:fxyfxfy,证明fy为奇函数。解(1)求0f:令0,0,02000xyfff(2)令:0xyffyfyfyfyfy为奇函数第二部分:1.下列极限正确的()A.sinlim1xxxB.sinlimsinxxxxx不存在C.1limsin1xxxD.limarctan2xx解:011sinlimsinlimxttxtxxt选C注:sin1sin10lim0;lim1sin101xxxxxABxxx2.下列极限正确的是()A.10lim0xxeB.10lim0xxeC.sec0lim(1cos)xxxeD.1lim(1)xxxe解:101lim0xxeee选A注::,:2,:1BCD3.若0limxxfx,0limxxgx,则下列正确的是()A.0limxxfxgxB.0limxxfxgxC.01lim0xxfxgxD.0lim0xxkfxk解:000limlimxxxxkkfxkfxk选D4.若02lim2xfxx,则0lim3xxfx()A.3B.13C.2D.12解:002323limlim32xttxxtfxft021211lim23323tftt,选B5.设1sin(0)0(0)1sin(0)xxxxfxxaxx且0limxfx存在,则a=()A.-1B.0C.1D.2解:0sinlim1,xxx01limsinxxaoax1a选C.6.当0x时,11afxx是比x高阶无穷小,则()A.1aB.0aC.a为任意实数D.1a解:0011112limlim01aaxxxxaaxx.故选A7.lim1xxxx解:原式lim1111lim11xxxxxeex8.2112lim11xxx解:原式112lim11xxxx111lim12xx9.3100213297lim31xxxx解:原式3972132limlim3131xxxxxx32832710.已知216lim1xxaxx存在,则a=解:1lim10xx21lim60xxax,160,7aa11.1201arcsinlimsinxxxexx解:11220011sin1,lim0limsin0xxxxeexx又00arcsinlimlim1xxxxxx,故原式=1.12.若220ln1lim0sinnxxxx且0sinlim01cosnxxx,则正整数n=解:222200ln1limlimsinnnxxxxxxxx20420,lim02nxnxnx2,4,nn故3n.13.求sin32limsin23xxxxx解:sin31lim0sin31,lim0xxxxxxsin21lim0sin21,lim0xxxxxx原式02203314.求01tan1sinlim1cosxxxxx解:原式有理化0tansinlim(1cos)(1tan1sin)xxxxxxx0tan(1cos)1lim(1cos)2xxxxx0tan111limlim222xxxxxx15.求21limsincosxxxx解:令1tx,当x时,0t原式10limcossin2tttt10lim1cos1sin2tttt0cos1sin2lim2ttttee16.求0lncos2limlncos3xxx解:原式0ln1cos21limln1cos31xxx变形0cos21limcos31xxx等价2021242lim1932xxx等价注:原式02sin2cos3limcos23sin3xxxxx4917.求02limsinxxxeexxx解:原式0020lim1cosxxxeex000000limlim2sincosxxxxxxeeeexx18.设fx1,01cos,0xeaxxxx且0limxfx存在,求a的值。解:10lim0xxeaeaaa2001cos2limlimxxxxxx0122lim2xxx22a19.113ln0limsin3xxx解:原式003coslimsin30ln(sin3)3lim13ln0xxxxxxxee换底法0031limlim3sin33xxxxxxeee20.求21limln1xxxx解:原式201ln11limtttxtt20ln1limtttt通分01101lim2ttt0001111limlim2112tttttt21.求2lim39121xxxx解:原式2229921lim3921xxxxxxx有理化221lim3921xxxxx21221lim3332139xxxx.22.已知22281lim225xxmxxnxn,求常数,mn的值。解:(1)∵原极限存在且22lim220xxnxn22lim80,4280xxmxm,212,6mm(2)22268lim22xxxxnxn2002646lim2242xxxnn2125n102n12n答6,12mn第三部分:1.若fx为是连续函数,且01,10ff,则1limsinxfxx()A.-1B.0C.1D.不存在解:原式1sin1limsinlim1xxfxfxfxx连续10f,选B2.要使ln1mxfxkx在点0x处连续,应给0f补充定义的数值是()A.kmB.kmC.lnkmD.kme解:00limlnlim(1)mxxxfxkx0limlnlnxmkxkmxeekm0fkm选A3.若lim()xafxA,则下列正确的是()A.limxafxAB.limxafxA