定积分习题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.第五章定积分(A层次)1.203cossinxdxx;2.adxxax0222;3.31221xxdx;4.1145xxdx;5.411xdx;6.14311xdx;7.21ln1exxdx;8.02222xxdx;9.dxx02cos1;10.dxxxsin4;11.dxx224cos4;12.55242312sindxxxxx;13.342sindxxx;14.41lndxxx;15.10xarctgxdx;16.202cosxdxex;17.dxxx02sin;18.dxxe1lnsin;19.243coscosdxxx;20.40sin1sindxxx;21.dxxxx02cos1sin;22.21011lndxxxx;23.dxxx4211;24.20sinlnxdx;25.0211dxxxdx0。(B层次)1.求由0cos00xyttdtdte所决定的隐函数y对x的导数dxdy。2.当x为何值时,函数xtdttexI02有极值?3.xxdttdxdcossin2cos。4.设1,211,12xxxxxf,求20dxxf。.5.1lim202xdtarctgtxx。6.设其它,00,sin21xxxf,求xdttfx0。7.设时当时当0,110,11xexxxfx,求201dxxf。8.2221limnnnnn。9.求nknknknnene12lim。10.设xf是连续函数,且102dttfxxf,求xf。11.若2ln261xtedt,求x。12.证明:212121222dxeex。13.已知axxxdxexaxax224lim,求常数a。14.设0,0,12xexxxfx,求312dxxf。15.设xf有一个原函数为x2sin1,求202dxxfx。16.设xbaxxfln,在3,1上0xf,求出常数a,b使31dxxf最小。17.已知2xexf,求10dxxfxf。18.设102022dxxfdxxfxxxf,求xf。19.02sincoscoscosdxxxfxxf。.20.设0x时,dttftxxFx022的导数与2x是等价无穷小,试求0f。(C层次)1.设xf是任意的二次多项式,xg是某个二次多项式,已知121406110fffdxxf,求dxxgba。2.设函数xf在闭区间ba,上具有连续的二阶导数,则在ba,内存在,使得fabbafabdxxfba32412。3.xf在ba,上二次可微,且0xf,0xf。试证2afbfabdxxfafabba。4.设函数xf在ba,上连续,xf在ba,上存在且可积,0bfaf,试证dxxfxfba21(bxa)。5.设xf在1,0上连续,010dxxf,110dxxxf,求证存在一点x,10x,使4xf。6.设xf可微,00f,10f,dttxtfxFx022,求40limxxFx。7.设xf在ba,上连续可微,若0bfaf,则xfdxxfabbxabamax42。8.设xf在BA,上连续,BbaA,求证dxkxfkxfbak0limafbf。9.设xf为奇函数,在,内连续且单调增加,dttftxxFx03,证明:(1)xF为奇函数;(2)xF在,0上单调减少。.10.设xf可微且积分dtxtxfxf10的结果与x无关,试求xf。11.若xf在,0连续,20f,1f,证明:03sinxdxxfxf。12.求曲线xdttty021在点(0,0)处的切线方程。13.设xf为连续函数,对任意实数a有aadxxxf0sin,求证xfxf2。14.设方程yxtdtyxtgx02sec2,求22dxyd。15.设xf在ba,上连续,求证:afxfdttfhtfhxah1lim0(bxa)16.当0x时,xf连续,且满足xdttfxx102,求2f。17.设xf在1,0连续且递减,证明010dxxfdxxf,其中1,0。18.设xf连续,dttaftfxFx20,00f,1af,试证:122aFaF。19.设xg是ba,上的连续函数,dttgxfxa,试证在ba,内方程0abbfxg至少有一个根。20.设xf在ba,连续,且0xf,又dttfdttfxFxbxa1,证明:(1)2xF(2)0xF在ba,内有且仅有一个根。21.设xf在a2,0上连续,则aadxxafxfdxxf0202。22.设xf是以为周期的连续函数,证明:0202sindxxfxdxxfxx。.23.设xf在ba,上正值,连续,则在ba,内至少存在一点,使babadxxfdxxfdxxf21。24.证明10010ln1lnlnduufduufufdttxfx。25.设xf在ba,上连续且严格单调增加,则babadxxxfdxxfba2。26.设xf在ba,上可导,且Mxf,0af,则22abMdxxfba。27.设xf处处二阶可导,且0xf,又tu为任一连续函数,则aadttuafdttufa0011,0a。28.设xf在ba,上二阶可导,且0xf,则2bafabdxxfba。29.设xf在ba,上连续,且0xf,0badxxf,证明在ba,上必有0xf。30.xf在ba,上连续,且对任何区间ba,,有不等式1Mdxxf(M,为正常数),试证在ba,上0xf。第五章定积分(A)1.203cossinxdxx解:原式41cos41cos204203xxdx2.adxxax0222解:令taxsin,则tdtadxcos当0x时0t,当ax时2t原式2022coscossintdtatata.20420244cos182sin4dttatdta42044164sin41828ataa3.31221xxdx解:令tgx,则ddx2sec当1x,3时分别为4,3原式dtg3422secsec342sinsind33224.1145xxdx解:令ux45,则24145ux,ududx21当1x,1时,1,3u原式61581132duu5.411xdx解:令tx,tdtdx2当1x时,1t;当4x时,2t原式2121211212tdtdtttdt32ln221ln22121tt6.14311xdx.解:令ux1,则21ux,ududx2当1,43x时0,21u原式2ln21111212210021duuuduuu7.21ln1exxdx解:原式2211ln1ln11lnln11eexdxxdx232ln1221ex8.02222xxdx解:原式02022111xarctgxdx24411arctgarctg9.dxx02cos1解:原式002cos2cos2dxxdxx220cos2cos2dxxxdx22sinsin2220xx10.dxxxsin4解:∵xxsin4为奇函数∴0sin4xdxx11.dxx224cos4解:原式2022204cos22cos24dxxxdx.2022022cos2cos2122cos12dxxxdxx2020204cos12cos22dxxxdxx202044cos4122sin2xxdx234sin412320x12.55242312sindxxxxx解:∵12sin2423xxxx为奇函数∴012sin552423dxxxxx13.342sindxxx解:原式34xdctgx3434ctgxdxxctgx34sinln9341x22ln23ln934123ln21934114.41lndxxx解:原式41ln2xxd.4141lnln2xdxxx4112ln42dxxx412122ln8dxx42ln815.10xarctgxdx解:原式10221arctgxdx1022102121dxxxarctgxx10210121218xdxdx101021218arctgxx21416.202cosxdxex解:原式202sinxdex2022022sinsindxexxexx202cos2xdeex2022022cos2cos2dxexxeexx202cos42xdxeex故251cos202exdxex17.dxxx02sin.解:原式020222cos1sindxxxdxxx02022cos2121xdxxdxx02032sin4161xdxx002322sin2sin416xdxxxx032cos416xxd462cos2cos4163003xdxxx18.dxxe1lnsin解:原式eedxxxxxx111lncoslnsinedxxe1lncos1sineedxxxxxxe111lnsinlncos1sinedxxee1lnsin11cos1sin故

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功