概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第四章大数定律与中心极限定理习题4.11.如果XXPn→,且YXPn→.试证:P{X=Y}=1.证:因|X−Y|=|−(Xn−X)+(Xn−Y)|≤|Xn−X|+|Xn−Y|,对任意的ε0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεYXPXXPYXPnn,又因XXPn→,且YXPn→,有02||lim=⎭⎬⎫⎩⎨⎧≥−+∞→εXXPnn,02||lim=⎭⎬⎫⎩⎨⎧≥−+∞→εYXPnn,则P{|X−Y|≥ε}=0,取k1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−kYXP,即11||=⎭⎬⎫⎩⎨⎧−kYXP,故11||lim1||}{1=⎭⎬⎫⎩⎨⎧−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧−==+∞→+∞=kYXPkYXPYXPkkI.2.如果XXPn→,YYPn→.试证:(1)YXYXPnn+→+;(2)XYYXPnn→.证:(1)因|(Xn+Yn)−(X+Y)|=|(Xn−X)+(Yn−Y)|≤|Xn−X|+|Yn−Y|,对任意的ε0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεYYPXXPYXYXPnnnn,又因XXPn→,YYPn→,有02||lim=⎭⎬⎫⎩⎨⎧≥−+∞→εXXPnn,02||lim=⎭⎬⎫⎩⎨⎧≥−+∞→εYYPnn,故0}|)()({|lim=≥+−++∞→εYXYXPnnn,即YXYXPnn+→+;(2)因|XnYn−XY|=|(Xn−X)Yn+X(Yn−Y)|≤|Xn−X|⋅|Yn|+|X|⋅|Yn−Y|,对任意的ε0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεYYXPYXXPXYYXPnnnnn,对任意的h0,存在M10,使得4}|{|1hMXP≥,存在M20,使得8}|{|2hMYP≥,存在N10,当nN1时,8}1|{|hYYPn≥−,因|Yn|=|(Yn−Y)+Y|≤|Yn−Y|+|Y|,有4}|{|}1|{|}1|{|22hMYYYPMYPnn≥+≥−≤+≥,存在N20,当nN2时,4)1(2||2hMXXPn⎭⎬⎫⎩⎨⎧+≥−ε,当nmax{N1,N2}时,有2244}1|{|)1(2||2||||22hhhMYPMXXPYXXPnnnn=++≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N30,当nN3时,42||1hMYYPn⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11hhhMXPMYYPXYYPnn=+≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h0,当nmax{N1,N2,N3}时,有hhhYYXPYXXPXYYXPnnnnn=+⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim=≥−+∞→εXYYXPnnn,即XYYXPnn→.3.如果XXPn→,g(x)是直线上的连续函数,试证:)()(XgXgPn→.证:对任意的h0,存在M0,使得4}|{|hMXP≥,存在N10,当nN1时,4}1|{|hXXPn≥−,因|Xn|=|(Xn−X)+X|≤|Xn−X|+|X|,则244}|{|}1|{|}1|{|hhhMXPXXPMXPnn=+≥+≥−≤+≥,因g(x)是直线上的连续函数,有g(x)在闭区间[−(M+1),M+1]上连续,必一致连续,对任意的ε0,存在δ0,当|x−y|δ时,有|g(x)−g(y)|ε,存在N20,当nN2时,4}|{|hXXPn≥−δ,则对任意的h0,当nmax{N1,N2}时,有{}}|{|}1|{|}|{|}|)()({|0MXMXXXPXgXgPnnn≥+≥≥−≤≥−≤UUδεhhhhMXPMXPXXPnn=++≥++≥+≥−≤424}|{|}1|{|}|{|δ,故0}|)()({|lim=≥−+∞→εXgXgPnn,即)()(XgXgPn→.4.如果aXPn→,则对任意常数c,有cacXPn→.证:当c=0时,有cXn=0,ca=0,显然cacXPn→;当c≠0时,对任意的ε0,有0||||lim=⎭⎬⎫⎩⎨⎧≥−+∞→caXPnnε,故0}|{|lim=≥−+∞→εcacXPnn,即cacXPn→.5.试证:XXPn→的充要条件为:n→+∞时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XXXXEnn.3证:以连续随机变量为例进行证明,设Xn−X的密度函数为p(y),必要性:设XXPn→,对任意的ε0,都有0}|{|lim=≥−+∞→εXXPnn,对012+εε,存在N0,当nN时,εεε+≥−1}|{|2XXPn,则∫∫∫≥∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||yynndyypyydyypyydyypyyXXXXEεεεεεεεεεεεεε=+++≥−+−+=++≤∫∫≥11}|{|}|{|1)()(12||||XXPXXPdyypdyypnnyy,故n→+∞时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XXXXEnn;充分性:设n→+∞时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XXXXEnn,因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|yyyndyypyydyypdyypXXP⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1XXXXEdyypyynnεεεε,故0}|{|lim=≥−+∞→εXXPnn,即XXPn→.6.设D(x)为退化分布:⎩⎨⎧≥=.0,1;0,0)(xxxD试问下列分布函数列的极限函数是否仍是分布函数?(其中n=1,2,….)(1){D(x+n)};(2){D(x+1/n)};(3){D(x−1/n)}.解:(1)对任意实数x,当n−x时,有x+n0,D(x+n)=1,即1)(lim=++∞→nxDn,则{D(x+n)}的极限函数是常量函数f(x)=1,有f(−∞)=1≠0,故{D(x+n)}的极限函数不是分布函数;(2)若x≥0,有01+nx,11=⎟⎠⎞⎜⎝⎛+nxD,即11lim=⎟⎠⎞⎜⎝⎛++∞→nxDn,若x0,当xn1−时,有01+nx,01=⎟⎠⎞⎜⎝⎛+nxD,即01lim=⎟⎠⎞⎜⎝⎛++∞→nxDn,则⎩⎨⎧≥=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01limxxnxDn这是在0点处单点分布的分布函数,满足分布函数的基本性质,4故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+nxD1的极限函数是分布函数;(3)若x≤0,有01−nx,01=⎟⎠⎞⎜⎝⎛−nxD,即01lim=⎟⎠⎞⎜⎝⎛−+∞→nxDn,若x0,当xn1时,有01−nx,11=⎟⎠⎞⎜⎝⎛−nxD,即11lim=⎟⎠⎞⎜⎝⎛−+∞→nxDn,则⎩⎨⎧≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01limxxnxDn在x=0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−nxD1的极限函数不是分布函数.7.设分布函数列{Fn(x)}弱收敛于连续的分布函数F(x),试证:{Fn(x)}在(−∞,+∞)上一致收敛于分布函数F(x).证:因F(x)为连续的分布函数,有F(−∞)=0,F(+∞)=1,对任意的ε0,取正整数ε2k,则存在分点x1x2…xk−1,使得1,,2,1,)(−==kikixFiL,并取x0=−∞,xk=+∞,可得kkikxFxFii,1,,2,1,21)()(1−==−−Lε,因{Fn(x)}弱收敛于F(x),且F(x)连续,有{Fn(x)}在每一点处都收敛于F(x),则存在N0,当nN时,1,,2,1,2|)()(|−=−kixFxFiinLε,且显然有20|)()(|00ε=−xFxFn,20|)()(|ε=−kknxFxF,对任意实数x,必存在j,1≤j≤k,有xj−1≤xxj,因2)()()()(2)(11εε+≤≤−−−jjnnjnjxFxFxFxFxF,则εεεε−=−−−−−−222)()()()(1xFxFxFxFjn,且εεεε=++−−222)()()()(xFxFxFxFjn,即对任意的ε0和任意实数x,总存在N0,当nN时,都有|Fn(x)−F(x)|ε,故{Fn(x)}在(−∞,+∞)上一致收敛于分布函数F(x).8.如果XXLn→,且数列an→a,bn→b.试证:baXbXaLnnn+→+.证:设y0是FaX+b(y)的任一连续点,则对任意的ε0,存在h0,当|y−y0|h时,4|)()(|0ε−++yFyFbaXbaX,又设y是满足|y−y0|h的FaX+b(y)的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+abyFabyXPybaXPyFXbaX}{)(,有abyx−=是FX(x)的连续点,且XXLn→,有)()(limxFxFXXnn=+∞→,存在N1,当nN1时,4|)()(|ε−xFxFXXn,即4|)()(|ε−++yFyFbaXbaXn,5则当nN1且|y−y0|h时,2|)()(||)()(||)()(|00ε−+−≤−++++++yFyFyFyFyFyFbaXbaXbaXbaXbaXbaXnn,因X的分布函数FX(x)满足FX(−∞)=0,FX(+∞)=1,FX(x)单调不减且几乎处处连续,存在M,使得FX(x)在x=±M处连续,且41)(ε−MFX,4)(ε−MFX,因XXLn→,有41)()(limε−=+∞→MFMFXXnn,4)()(limε−=−+∞→MFMFXXnn,则存在N2,当nN2时,41)(ε−MFnX,4)(ε−MFnX,可得2)(1)(}|{|ε−+−=MFMFMXPnnXXn,因数列an→a,bn→b,存在N3,当nN3时,Mhaan4||−,4||hbbn−,可得当nmax{N2,N3}时,⎭⎬⎫⎩⎨⎧−+−=⎭⎬⎫⎩⎨⎧+−+2|)()(|2|)()(|hbbXaaPhbaXbXaPnnnnnnn2}|{|24||42||||||ε=⎭⎬⎫⎩⎨⎧+⋅≤⎭⎬⎫⎩⎨⎧−+⋅−≤MXPhhXMhPhbbXaaPnnnnn,则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000hbaXbXahybaXPybXaPyFnnnnnnnnbXannnU222|)()(|200ε+⎟⎠⎞⎜⎝⎛+⎭⎬⎫⎩⎨⎧+−++⎭⎬⎫⎩⎨⎧+≤+≤+hyFhbaXbXaPhybaXPbaXnnnnnn,且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000hbaXbXaybXaPhybaXPhyFnnnnnnnnbaXnU2)(2|)()(|}{00ε+⎭⎬⎫⎩⎨⎧+−++≤+≤+yFhbaXbXaPybXaPnnnbXannnnnnn,即22)(22000εε+⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−+++hyFyFhyFbaXbXabaXnnnnn,因当nN1且|y−y0|h时,2)()(2)(00εε+−+++yFyFyFbaXbaXbaXn,在区间⎟⎠⎞⎜⎝⎛++hyhy00,2取FaX+b(y)的任一连续点y1,满足|y1−y0|h,当nmax{N1,N2,N3}时,εεε++≤+⎟⎠⎞⎜⎝⎛+++++)(2)(22)(0100yFyFhyFyFbaXbaXbaXbXannnnn,在区间⎟⎠⎞⎜⎝⎛−−2,00hyhy取FaX+b(y)的任一连续点y2,满足|y2−y0|h,当nmax{N1,N2,N3}时,6εεε−−≥−⎟⎠⎞⎜⎝⎛−++++)(2)(22)(0200yFyFhyFyFbaXbaXbaXbXannnnn,即对于FaX+b(y)的任一连续点y0,当nmax{N1,N2,N3}时,ε−++|

1 / 36
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功