以数的运算为例谈整体把握小学数学课程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1以数的运算为例谈如何把握小学低年级数学课程数与运算在小学数学课程中占有重要的地位,培养学生基本的运算技能一直是广大教师关注的问题。而且“双基”教学历来是我国数学教育的一个传统优势,令世界上其他国家望尘莫及,这次新课改又在双基基础上提出了“四基”(基础知识、基本技能、基本思想、基本活动经验)。那么如何把握运算在小学低年级中的地位和作用呢?一、计算教学在小学数学教学中所处的地位1.从课程结构上看,计算教学是其它教学的基础。小学数学是从识数和数的四则计算开始的。四则计算贯穿整个小学数学教学全过程。常言道,基础不牢,地动山摇。如果四则计算不过关,一定不能学好其它的数学知识,更谈不上创新能力的培养。2.从历史沿革上看,以前小学数学叫算术。用算术来代表小学现行数学教材,显然已经不全面。但传统的算术仍是贯穿小学数学的主线。二、要重视计算方法的探索及算理的理解我国数学课程一直将数的运算作为小学数学的主要内容,重视培养学生的运算能力,并且取得很多优秀的成绩和宝贵的经验。但长期以来,一些人对运算能力的理解并不全面,将其仅仅等同于运算技能(即算得又对又快),并且由于考试等原因对运算难度和速度的要求越来越高。在信息技术如此发达的今天,是否还需要学生计算那样难2的题目,并且算得那样快?当然,基本的运算技能是必需的,但“基本”的标准是什么?学生是否应将精力放在其他有价值的内容上?还有哪些有价值的内容?实际上,数的运算和运用运算解决问题是具有天然联系的,因此《义务教育数学课程标准(实验稿)》(以下简称《标准》)将其整合在一起。于是,数的运算就包括如下几条主线:第一,数的运算的意义及四则运算之间的关系;第二,获得运算的结果(包括估算、精确计算);第三,运算律及运算性质;第四,运用运算解决实际问题。今天我们将集中讨论“获得运算的结果”中有关精确计算的内容。进一步,精确计算的学习又可以细分为四条线索:第一,计算方法的探索及算理的理解;第二,计算法则的形成与内化;第三,计算法则的熟练;第四,使用计算器进行计算。曾经有一些教师有这样的想法,对于计算教学,只要让学生把法则背诵下来,反复练习就可以达到又对又快,似乎没有必要花时间去讨论这些法则背后的道理(即算理)。那么,算理是否重要?什么是算理?学生想法中所呈现的算理又是什么呢?我们在教材和教学中如何帮助学生理解算理呢?学生的数学能力先天性地存在差异这是不争的事实。但不能否认每个学生都有学习数学的能力。不同的人,接受同一数学概念,接受的方式可能不同。教师的责任就是找到不同的学生接受数学概念的不同的方式。我们数学教师的任务就是要激发每一个学生的数学潜能。下要保底,上不封顶。专家在制定课程标准时,就考虑到了绝大多数学生能达到最基本的要求。我们要真正做到3用教材教,而不是教教材。要透彻理解课程标准,不要迷信教材和教参。做到结合自己的教学经验创造性地使用教材,针对不同的人,提出不同的要求,采用不同的方法。1.重视算理的教学这里首先需要明确的是算理、法则的内涵以及二者的关系。算理是四则运算的理论依据,它是由数学概念、运算定律、运算性质等构成的;运算法则是四则运算的基本程序和方法。运算是基于法则进行的,而法则又要满足一定的道理。所以,算理为法则提供了理论依据,法则又使算理可操作化。由此不难看出,教学中既要重视法则的教学,还要使学生理解法则背后的道理。不仅要让学生知道该怎么计算,而且还应该让学生明白为什么要这样计算,使学生不仅知其然,而且还知其所以然,在理解算理的基础上掌握运算法则。为了进一步说明重视算理教学的重要性,这里不妨举一个例子。这是二年级学生的一次测试中设计了如下两道题目:题目1:计算58﹢286(目的是考查二年级学生是否掌握了两位数加三位数的法则:相同数位要对齐。)。5858A+286B.+286让学生选择正确的答案,有个别同学还是选择了B。询问了一下原因,生说:不是说数位要对齐吗。看来学生只记住了其中的一部分,要对4齐,至于什么要对齐,他不知道。看来对于加法的算理还是没有真正理解。题目2:如何理解99×9﹢99选择正确的序号﹙﹚A.99个9加99B.9个99加1个99(本题考查的是2年级学生是否理解几个几再添上几个几的含义)。设计题目2是源于一次测试题。在与一名2年级学生交流时,他很快选择出结果是A,问为什么选择A时,他快速地回答道:“是老师告诉的,99×9表示99个9,再加99.追问结果是多少?他说数很大,我也不知道是多少。”这次简短的谈话引起了我们的深思:到底有多少学生真正理解了算式所表达的意义呢?很显然,正确的结果应该是B。9个99加1个99是10个99结果是990.2.了解学生想法中所蕴涵的道理在教学中我们要鼓励学生自己探索如何进行运算,并且尝试说明自己这样算的道理,在这些学生的想法中往往蕴涵着算理。为此,我们不妨来看一个课堂教学片段[1]:【案例】关于19﹢18的讨论。﹙学生未学竖式﹚课上通过一个问题情境“小明有19颗糖果,小英有18颗糖果,他们两人一共有多少颗糖果?“首先,学生进行了猜想。一部分学生认为是30多,另一部分学生认为是20多,产生了分歧。5教师给学生充分思考探索运算结果的空间,交流时学生发言踊跃。生1:我是这样想的:先把这两个数分解成整十数和一位数,然后整十加整十数,一位数加一位数,最后合起来就行了。10﹢10﹦209﹢8﹦1720﹢17﹦37生2:我还有一种方法。就是把18看成一个整十数20,在和19相加,这样就多加了2,最后减掉就行了。19﹢20﹦3939﹣2﹦37生3:我和他的不一样,我是把19看成整十数20,在和18相加,这样就多加1,最后减掉1就可以了。20﹢18﹦3838﹣1﹦37生4:我是这样想的:把18分解成10和8,10和19相加,最后再和8相加。19﹢10﹦2929﹢8﹦37生5:我会用竖式计算。老师问:谁教你的?他说他爸爸叫他的。19+11837仔细分析学生这么多的方法,不难发现其中的不少方法蕴涵着朴素的道理。比如生1到生4的方法都是运用转化为以前学过的知识计算的;生5的方法则是父亲教的,也得到了结果;这就启发我们思考6算法多样化的一个重要价值。实际上算法多样化不仅可以鼓励学生个性化、主动地学习,同时,学生在自主探索运算方法的过程中,将运用已有的概念、定律、法则等尝试解决新问题,这就是一个寻找“合乎道理”的运算方法的过程。这些多样化的运算方法往往蕴涵着学生心目中的“算理”,并且呈现形式是多样的,解释的途径也不尽相同,对这些方法的比较和交流无疑为学生理解算理奠定了基础。在此基础上教师再加以总结归纳,学生对于算理的理解就会加深了。以上,虽然针对的是一年级的一个加法案例,但为教师教学提供了共通的策略。第一,重视学生自主探索计算方法的过程,因为这种探索往往体现了学生对于算理的初步理解。在此基础上,教师组织学生对各种方法进行比较,凸显其中蕴涵的算理。第二,作为教师,要梳理小学阶段各种运算的算理,特别是梳理学生常见的方法背后是否蕴涵着算理,这样就能从容地面对学生的多种方法。第三,要鼓励学生运用自己的语言有条理地表达自己的思考,即数的运算也是讲道理的,不是按照程序机械运行。实际上,上面几位学生在阐述自己的方法时,都在进行着推理,都在有条理地进行表达。但算法多样化绝不是让所有的学生掌握所有的方法!3.通过多种方式帮助学生理解算理为了帮助学生更好地理解算理,教师要善于选择多种方式。常用的理解算理的方式有实物原型、直观模型、已有知识等。其中实物原型指的是具有一定结构的实物材料,如元、角、分等人民币,千米、7米、分米等测量单位;而直观模型指的是具有一定结构的操作材料和直观材料,如小棒、计数器、长方形或圆形图、数直线。234-994.整体把握算理理解的阶段性和长期性学生对算理的理解往往不是一蹴而就的。需要认识到它的阶段性和长期性。理解算理的教学有很多种层次:●举例说明算式的合理性,让学生愿意接受。这种初步的理解是接受性学习的必要步骤。●尝试性的探索。教师把问题提出来。让学生试试看能否“有办法解决”,但只是尝试而已,不求正确。这是教师进行“启发式”讲解的前奏。●学生探究,教师归纳,迅速把学生的思维集中到正确轨道上来。教师的主导作用十分明显。●学生探究,学生归纳。全程进行开放式的发现法教学。三、计算法则的内化与形成学生的数学能力先天性地存在差异这是不争的事实。但不能否认每个学生都有学习数学的能力。不同的人,接受同一数学概念,接受的方式可能不同。教师的责任就是找到不同的学生接受数学概念的不同的方式。我们数学教师的任务就是要激发每一个学生的数学潜能。下要保底,上不封顶。专家在制定课程标准时,就考虑到了绝大多数学生能达到最基本的要求。我们要真正做到用教材教,而不是教教材。要透彻理解课程标准,不要迷信教材和教参。做到结合自己的教学经8验创造性地使用教材,针对不同的人,提出不同的要求,采用不同的方法。有的教师重视让学生去探索如何计算,并在此基础上帮助学生理解算理,但是往往忽视了另一个重要的过程——计算法则(或个体使用方法)的内化与形成。即当学生经历了算法多样化,并且对于运算的道理有所理解后,还需要学生对众多算法中自己选择使用的方法或者常规的计算法则进行再熟悉,以达到内化,然后才是进一步的巩固练习。四、计算法则的熟练使用“熟练”一词,并不是说要求学生对于所有的计算法则的使用都必须达到一定的速度,而是指形成必要的计算技能,从而在以后遇到此类计算时,学生能“自动地”使用法则。理想的教学是当学生面对精确计算的题目时,能够回忆起法则进行“自动”的运算,而当询问法则背后的道理时,学生又能运用自己的方式正确地加以表达。五、如何培养学生的数感《课标》提出了“数感”的概念,在新课程实施中,不少教师产生了疑惑,如新课程还要不要学生掌握必要的运算技能?新课程下学生的运算技能大大下降了怎么办?如何科学地培养小学生的运算技能?如何合理地评价他们的运算技能?除了运算技能,“数与代数”领域中的重要内容还有什么?“数与代数”的核心目标有哪些等更加深刻的问题?等等。这些疑惑都需要教师进行思考,对此有比较清醒的认识并加以有效解决无疑是非常重要的。小学数学课程的运算主线9是数感,所谓数感就是对数的含义、计算技能、数的顺序大小、数的多种表达方法、模式、数运算及结果的准确感知和理解等。数感主要表现形式为:理解数的意义;能用多种方法表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果合理性作出解释。它表示着一个人在数、数字系统和运算具有意义观念,是一种心灵的感受,是一种意识活动,它存在于人的头脑之中,是一种高级的智力活动。那么如何有效地培养数感呢?1.体验生活,建立数感布鲁纳强调:数学知识不是一个简单的结果,而是一个过程。小学生的年龄特点也决定了他们在认识活动中的思维正经历着从具体形象思维到抽象逻辑思维的发展。因此教师在教学中应根据小学生这种思维特点进行教学,以生活实际和学生的经历、体验帮助理解抽象的概念,建立数感。我们要把培养学生的数感,从室内扩展到室外,校内延伸到社会,让学生用数学的眼光去观察、认识周围事物,用数学的概念与语言去反映和描述社会生产和生活实践的问题,结合生活中的具体实例去教学数学知识,让学生感觉数学就在身边,生活中充满了数学,从而能以积极的心态投入学习、体验数感。例如教学时间、长度、面积、体积、重量等知识时,可以让学生经历、体验,然后再学习相关的进制和应用。在教学数的认识时,可让学生说出与日常生活密切相关的一些数字及其作用。如,你今年几岁?班级号是多少?你的鞋号是多10少?火警电话号码是少?急救中心电话号码是少?……这些数据、单位都来自于生活实际,学生很容易理解、接受,这种“亲数学”行为,能够使学生在生活中体会数的含义,建立良好的数感。2.实践操作,强化数感学生体验到数学的价值和意义,继而确立应用数学的信心,是形成良好数感的重要条件。鉴于此,教学就打破从概念到概念,从课堂到课堂的数学应用僵局,引导学生用数学的思想、方法,去分析、理解、解决生活问题

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功