17.2.1999/H.VÄaliahoPronunciationofmathematicalexpressionsThepronunciationsofthemostcommonmathematicalexpressionsaregiveninthelistbelow.Ingeneral,theshortestversionsarepreferred(unlessgreaterprecisionisnecessary).1.Logic9thereexists8forallp)qpimpliesq/ifp,thenqp,qpifandonlyifq/pisequivalenttoq/pandqareequivalent2.Setsx2AxbelongstoA/xisanelement(oramember)ofAx=2AxdoesnotbelongtoA/xisnotanelement(oramember)ofAA½BAiscontainedinB/AisasubsetofBA¾BAcontainsB/BisasubsetofAA\BAcapB/AmeetB/AintersectionBA[BAcupB/AjoinB/AunionBAnBAminusB/thedi®erencebetweenAandBA£BAcrossB/thecartesianproductofAandB3.Realnumbersx+1xplusonex¡1xminusonex§1xplusorminusonexyxy/xmultipliedbyy(x¡y)(x+y)xminusy,xplusyxyxovery=theequalssignx=5xequals5/xisequalto5x6=5x(is)notequalto51x´yxisequivalentto(oridenticalwith)yx6´yxisnotequivalentto(oridenticalwith)yxyxisgreaterthanyx¸yxisgreaterthanorequaltoyxyxislessthanyx·yxislessthanorequaltoy0x1zeroislessthanxislessthan10·x·1zeroislessthanorequaltoxislessthanorequalto1jxjmodx/modulusxx2xsquared/x(raised)tothepower2x3xcubedx4xtothefourth/xtothepowerfourxnxtothenth/xtothepowernx¡nxtothe(power)minusnpx(square)rootx/thesquarerootofx3pxcuberoot(of)x4pxfourthroot(of)xnpxnthroot(of)x(x+y)2xplusyallsquared³xy´2xoveryallsquaredn!nfactorial^xxhat¹xxbar~xxtildexixi/xsubscripti/xsu±xi/xsubinXi=1aithesumfromiequalsonetonai/thesumasirunsfrom1tonoftheai4.Linearalgebrakxkthenorm(ormodulus)ofx¡¡!OAOA/vectorOAOAOA/thelengthofthesegmentOAATAtranspose/thetransposeofAA¡1Ainverse/theinverseofA25.Functionsf(x)fx/fofx/thefunctionfofxf:S!TafunctionffromStoTx7!yxmapstoy/xissent(ormapped)toyf0(x)fprimex/fdashx/the(¯rst)derivativeoffwithrespecttoxf00(x)fdouble{primex/fdouble{dashx/thesecondderivativeoffwithrespecttoxf000(x)ftriple{primex/ftriple{dashx/thethirdderivativeoffwithrespecttoxf(4)(x)ffourx/thefourthderivativeoffwithrespecttox@f@x1thepartial(derivative)offwithrespecttox1@2f@x21thesecondpartial(derivative)offwithrespecttox1Z10theintegralfromzerotoin¯nitylimx!0thelimitasxapproacheszerolimx!+0thelimitasxapproacheszerofromabovelimx!¡0thelimitasxapproacheszerofrombelowlogeylogytothebasee/logtothebaseeofy/naturallog(of)ylnylogytothebasee/logtothebaseeofy/naturallog(of)yIndividualmathematiciansoftenhavetheirownwayofpronouncingmathematicalexpres-sionsandinmanycasesthereisnogenerallyaccepted\correctpronunciation.Distinctionsmadeinwritingareoftennotmadeexplicitinspeech;thusthesoundsfxmaybeinterpretedasanyof:fx,f(x),fx,FX,FX,¡¡!FX.Thedi®erenceisusuallymadeclearbythecontext;itisonlywhenconfusionmayoccur,orwherehe/shewishestoemphasisethepoint,thatthemathematicianwillusethelongerforms:fmultipliedbyx,thefunctionfofx,fsubscriptx,lineFX,thelengthofthesegmentFX,vectorFX.Similarly,amathematicianisunlikelytomakeanydistinctioninspeech(exceptsometimesadi®erenceinintonationorlengthofpauses)betweenpairssuchasthefollowing:x+(y+z)and(x+y)+zpax+bandpax+ban¡1andan¡1TheprimaryreferencehasbeenDavidHallwithTimBowyer,Nucleus,EnglishforScienceandTechnology,Mathematics,Longman1980.GlenAndersonandMattiVuorinenhavegivengoodcommentsandsupplements.3