(完整版)2019中考二次函数压轴题专题分类训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1中考二次函数压轴题专题分类训练题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=89S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.【变式练习】1.(2009广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.AxyBOxCOyABD11图222.(2010绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.3.(2012铜仁)如图,已知:直线3xy交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线3xy上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.CEDGAxyOBF3题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.【变式练习】1.(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.E4O11xy2.(2009成都)在平面直角坐标系xOy中,已知抛物线y=2(1)(0)axca与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为3ykx,与x轴的交点为N,且COS∠BCO=31010。(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?3.(2012杭州)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值54.如图(1),抛物线42yxx与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线yxb与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2)),ABE与ACE的面积大小关系如何?当4b时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得BOC是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.yxCBAOEyxCBAOE第26题图(1)图(2)6题型三:构造等腰三角形【例3】如图,已知抛物线32bxaxy(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)在x轴上是否存在一点Q使得△ACQ为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【变式练习】1.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.72.如图,抛物线254yaxax经过ABC△的三个顶点,已知BCx∥轴,点A在x轴上,点C在y轴上,且AC=BC.(1)写出A,B,C三点的坐标并求抛物线的解析式;(2)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.3.(2010黄冈)已知抛物线2(0)yaxbxca顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线54y作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x=1上有一点3(1,)4F,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.ACByx0118题型四:构造相似三角形【例4】(2011临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.(2012天水)如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.92.如图,二次函数的图象经过点D(0,397),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【例5】(2012苏州)如图,已知抛物线y=错误!未找到引用源。x2-错误!未找到引用源。(b+1)x+错误!未找到引用源。(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.10【变式练习】1.(2012上海宝山)如图,平面直角坐标系xOy中,已知点A(2,3),线段AB垂直于y轴,垂足为B,将线段AB绕点A逆时针方向旋转90°,点B落在点C处,直线BC与x轴的交于点D.(1)试求出点D的坐标;(2)试求经过A、B、D三点的抛物线的表达式,并写出其顶点E的坐标;(3)在(2)中所求抛物线的对称轴上找点F,使得以点A、E、F为顶点的三角形与△ACD相似.2.(2012上海杨浦区)已知直线112yx与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90,使点A落在点C,点B落在点D,抛物线2yaxbxc过点A、D、C,其对称轴与直线AB交于点P,(1)求抛物线的表达式;(2)求∠POC的正切值;(3)点M在x轴上,且△ABM与△APD相似,求点M的坐标。(图7)11xyBAOxyO11113.(2012宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.12题型五:构造梯形【例6】已知,矩形OABC在平面直角坐标系中位置如图1所示,点A的坐标为(4,0),点C的坐标为)20(,,直线xy32与边BC相交于点D.(1)求点D的坐标;(2)抛物线cbxaxy2经过点A、D、O,求此抛物线的表达式;(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.【变式练习】1.已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.132.(2011义乌)已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.3.如图1,二次函数)0(2pqpxxy的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为45.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功