高中物理板块模型之动力学完美训练版六大类(基本型,组合型,衍生型)查看答案方法:在word中按Ctrl+Shift+8滑块初速度1.如图所示,一质量M=0.2kg的足够长的木板静止在水平地面上,一质量m=0.2kg的小滑块以女𝑣0=1.2m/s的速度从长木板的左端滑上长木板。已知小滑块与长木板间的动摩擦因数𝜇1=0.4,长木板与水平地面间的动摩擦因数𝜇2=0.1,最大静摩擦力等于滑动摩擦力(g=10m/s2),求:(1)小滑块从滑上长木板到速度相等所用的时间。(2)小滑块从滑上长木板到速度减为零的总位移。(3)小滑块相对长木板滑行的距离。2.如图所示,在光滑的水平面上有一个质量为M的木板B处于静止状态,现有一个质量为m的木块A从B的左端以初速度v0=3m/s开始水平向右滑动,已知M>m.用①和②分别表示木块A和木板B的图象,在木块A从B的左端滑到右端的过程中,下面关于二者速度v随时间t的变化图象,其中可能正确的是()3.【多选】如图甲所示,长2m的木板Q静止在水平面上,t=0时刻,可视为质点的小物块P以水平向右的某一初速度从Q的左端向右滑行。P、Q的速度-时间图象见图乙,其中a,b分别是0~1s内P、Q的速度-时间图线,c是1~2s内P、Q共同的速度-时间图线。已知P、Q的质量均是1kg,g取10m/s2。则以下判断正确的是()A.在0~2s内,木板Q下表面与水平面之间有摩擦力B.P对Q的摩擦力大小为1N,方向水平向左C.P、Q之间的动摩擦因数为0.1D.P相对Q静止的位置在木板Q的正中间4.如图甲所示,质量M=1kg的木板B静止在水平地面上,可视为质点的滑块A从木板的左侧沿木板表面水平冲上木板,A和B经过1s达到同一速度,然后共同减速直至静止,v-t图象如图乙所示,g=10m/s2,求:(1)A与B间的动摩擦因数μ1,B与水平面间的动摩擦因数μ2。(2)A的质量m。5.长为1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端冲上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4m/s,然后A、B又一起在水平冰面上滑行了8.0cm.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25.(取g=10m/s2)求:(1)木板与冰面的动摩擦因数μ2.(2)小物块相对于长木板滑行的距离.(3)为了保证小物块恰好不从木板的右端滑落,小物块冲上长木板的初速度应为多少?木板初速度1.(2013年新课标II)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。取重力加速度的大小g=10m/s2求:(1)物块与木板间的动摩擦因数μ1(2)木板与地面间的动摩擦因数μ2(3)从0.5s到停止,物块与木板的加速度分别多大(4)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小2.足够长的木板质量为1m,沿水平地面做匀减速运动。t=0时刻,在木板上无初速放一质量为2m的物块,物块与木板、木板与地面间的动摩擦因数相同.分别用1v和2v表示木板和物块的速度,下列反映1v和2v变化的图线中正确的是()3.如图所示,质量M=4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m=1.0kg的小滑块A(可视为质点)。初始时刻,A、B分别以v0=2.0m/s向左、向右运动,最后A恰好没有滑离B板。已知A、B之间的动摩擦因数μ=0.40,取g=10m/s2。求:⑴A、B相对运动时的加速度aA和aB的大小与方向⑵A相对地面速度为零时,B相对地面运动已发生的位移x⑶木板B的长度l4.一质量为M=2kg的长木板在粗糙水平地面上运动,在t=0时刻,木板速度为v0=12m/s,此时将一质量为m=1kg的小物块(可视为质点)无初速度地放在木板的右端,二者在0~2s内运动的vt图象如图所示.已知重力加速度g=10m/s2.求:(1)小物块与木板的动摩擦因数μ1以及木板与地面间的动摩擦因数μ2.(2)小物块最终停在距木板右端多远处?(3)若在t=2s时,使小物块的速度突然反向(大小不变),小物块恰好停在木板的左端,求木板的长度L.滑块受力1.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是()A.B.C.D.2.【多选】光滑水平桌面上放置一长木板,长木板上表面粗糙,上面放置一小铁块,现有一水平向右的恒力F作用于铁块上,以下判断正确的是()A.铁块与长木板都向右运动,且两者一定保持相对静止B.若水平力足够大,铁块与长木板间有可能发生相对滑动C.若两者保持相对静止,运动一段时间后,拉力突然反向,铁块与长木板间有可能发生相对滑动D.若两者保持相对静止,运动一段时间后,拉力突然反向,铁块与长木板间仍将保持相对静止3.如图所示,在光滑水平面上放着长为L,质量为M的长木板,在长木板左端放一质量为m的物块(可视为质点),开始时物体和长木板均处于静止状态,物块和长木板间是粗糙的.今对物块m施一水平向右的恒力F.下列判断正确的是()A.若只增大物块质量m,则相对滑动过程木板的加速度不变,但分离时速度𝑣变大B.若只增大物块质量m,则相对滑动过程木板的加速度变大,但分离时速度𝑣变小C.若只增大恒力F,则相对滑动过程木板的加速度变大,分离时速度𝑣也变大D.若只增大恒力F,则相对滑动过程木板的加速度不变,但分离时速度𝑣变小4.如图所示,一块质量为M=2kg,长L=lm的匀质木板放在足够长的水平桌面上,初始时速度为零.板的最左端放置一个质量m=lkg的小物块,小物块与木板间的动摩擦因数为μ1=0.2,小物块上连接一根足够长的水平轻质细绳,细绳跨过位于桌面边缘的定滑轮(细绳与滑轮间的摩擦不计,木板与滑轮之间距离足够长,g=10m/s2),要求:(1)若木板被固定,恒力F=4N向下拉绳,求小木块滑离木板时的速度大小v1;(2)若不固定木板,且板与桌面间光滑,某人仍以恒力F=4N向下拉绳,求小木块滑离木板时的速度大小v2(3)若不固定木板,若板与桌面间有摩擦,某人以恒定速度v=1m/s向下拉绳,为使物块能从板的右端滑出,求板与桌面间的动摩擦因数μ2.5.如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力Ff,且A、B的质量相等,则下列可以定性描述长木板B运动的vt图象是()atOa1a2atOa1a2atOa1a2atOa1a2木板受力1.如图甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A,木板B受到随时间t变化的水平拉力F作用,木板加速度a随力F变化的aF图象如图乙所示,g取10m/s2,则()A.滑块A的质量为4kgB.木板B的质量为1kgC.当F=10N时木板B加速度为4m/s2D.当F=10N时滑块A的加速度为2m/s22.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为1m和2m,各接触面间的动摩擦因数均为。重力加速度为g(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小(2)要使纸板相对砝码运动,求所需拉力的大小(3)本实验中,1m=0.5kg,2m=0.1kg,=0.2,砝码与纸板左端的距离d=0.1m,取g=102/ms。若砝码移动的距离超过l=0.002m,人眼就能感知。为确保实验成功,纸板所需的拉力至少多大?3.如图所示,质量为M、长度为L的长木板放在水平桌面上,木板右端放有一质量为m长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为µ.开始时小块、木板均静止,某时刻起给木板施加一水平向右的恒定拉力F,若最大静摩擦力等于滑动摩擦力.(1)要把长木板从小木块下拉出,求拉力F应满足的条件(2)若拉力F=5µ(m+M)g,求从开始运动到木板从小木块下拉出经历的时间4.如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木板。一个质量为m=1kg的小滑块放在木板的最右端,m与M之间的动摩擦因素𝜇=0.1,今对木板施加一水平向右的拉力F,g取10m/s2。(1)施力F后,要想把木板从小滑块的下方抽出来,求力F的大小应满足的条件。(2)为把木板从滑块的下方抽出来,施加某力后,发现刻力作用最短时间𝑡0=0.8𝑠恰好可以抽出,求此力的大小。组合型1.(2015·课标卷Ⅰ,25)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的vt图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.2.(2015·课标卷Ⅱ,25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=35)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示.假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为38,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变.已知A开始运动时,A离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s2.求:(1)在0~2s时间内A和B加速度的大小;(2)A在B上总的运动时间.3.如图所示,质量M=1kg的木板静置于倾角为37°的足够长的固定斜面上的某个位置,质量m=1kg、可视为质点的小物块以初速度v0=5m/s从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的外力F=14N,使木板从静止开始运动,当小物块与木板共速时,撤去该外力,最终小物块从木板的下端滑出.已知小物块与木板之间的动摩擦因数为0.25,木板与斜面之间的动摩擦因数为0.5,最大静摩擦力等于滑动摩擦力,g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)物块和木板共速前,物块和木板的加速度;(2)木板的最小长度;(3)物块在木板上运动的总时间.4.如图甲所示,质量M=5kg的木板A在水平向右F=30N的拉力作用下在粗糙水平地面上向右运动,t=0时刻在其右端无初速度地放上一质量为m=1kg的小物块B,放上物块后A、B的vt图象如图乙所示.已知物块可看作质点,木板足够长,取g=10m/s2.求:(1)物块与木板之间动摩擦因数μ1和木板与地面间的动摩擦因数μ2;(2)物块与木板之间摩擦产生的热量;(3)放上物块后,木板运动的总位移.衍生型1.(2017·课标卷Ⅲ,25)如图,两个滑块A和B的质量分别为mA=1kg和mB=5kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小