1北师大版五年级数学上册知识点汇总第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。3、在小数除法中的发现:①当除数大于1时,商小于被除数。②当除数小于1时,商大于被除数。4、小数除法的验算方法:①商×除数=被除数(通用)②被除数÷商=除数5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。6、循环小数问题:A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。B、小数部分的位数是无限的小数,叫做无限小数。如5.3…7.145145…等。C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3…3.12323…5.7171…)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333…的循环节是3,4.6767…的循环节是67,6.9258258…的循环节是258)7、用简便方法写循环小数的方法:只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点。2只有一个数字循环节的,就在这个数字上面记一个小圆点;有两位小数循环的,就在这两位数字上面,记上小圆点;有三位或以上小数循环的,在首位和末位记上小圆点。8、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。第二单元轴对称和平移1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。两图形重合时互相重合的点叫做对应点,也叫对称点。2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。3.轴对称图形具有对称性。4.轴对称图形的画法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。5.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。6.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置。(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。7.平移图形的画法:(1)确定平移的方向与距离。(2)将关键点按所需方向平移所需距离。(3)按原来图形的连接方式依次连接各对应点并标上相应字母。8.运用旋转设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定旋转点;(3)确定旋转度数;3(4)依次沿每次旋转后的基本图形的边缘画图。9.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)画出基本图形的对称图形第三单元倍数和因数1、自然数和整数像0,1,2,3,4,5,6,…这样的数是自然数。像-3,-2,-1,0,1,2,3,…这样的数是整数。2、倍数与因数。我们只在自然数(零除外)范围内研究倍数和因数。倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。补充知识点:一个数的倍数的个数是无限的。因数个数是有限的。一个数最小的因数是1,最大的因数是它本身;一个数最小的倍数是它本身,没有最大的倍数。3、2、5的倍数的特征(1)2的倍数的特征:个位上是0,2,4,6,8的数是2的倍数。(2)5的倍数的特征:个位上是0或5的数是5的倍数。(3)偶数和奇数的定义:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。能判断一个数是不是2或5的倍数。能判断一个非零自然数是奇数或偶数。4、补充知识点:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5的倍数。5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。6、(1)同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。(2)同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。4(3)同时是2,3和5的倍数的特征:个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。(4)6的倍数的特征:既是2的倍数又是3的倍数的数。(5)9的倍数的特征:一个数各个数位上的数字的和是9的倍数,这个数就是9的倍数。7、找因数:运用乘法算式,思考哪两个数相乘等于这个自然数。补充知识点:一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。8、质数与合数一个数只有1和它本身两个因数,这个数叫作质数。一个数除了1和它本身以外还有别的因数,这个数叫作合数。注意:1既不是质数也不是合数。9、判断质数、合数:一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。10、通过计算发现奇数、偶数相加奇偶性变化的规律:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数奇数-偶数=奇数偶数×偶数=偶数偶数×奇数=偶数奇数×奇数=奇数第四单元多边形面积1、比较图形的面积:借助方格纸,能直接判断图形面积的大小。平面图形面积大小的比较有多种方法:根据图形面积的大小,可以直接进行比较;可以借助参照物进行比较;可以运用重叠的方法进行比较;借助方格,利用数方格的的方法进行比较;直接计算面积后再进行比较等。图形面积相同,其形状可以是不同的。52、面积计算公式长方形周长=(长+宽)×2C=2(a+b)长方形面积=长×宽S=ab正方形周长=边长×4C=4a正方形面积=边长×边长S=a2平行四边形面积=底×高S=ah平行四边形底=面积÷高a=S÷h平行四边形高=面积÷底h=S÷a三角形面积=底×高÷2S=ah÷2三角形底=面积×2÷高a=2S÷h三角形高=面积×2÷底h=2S÷a梯形面积=(上底+下底)×高÷2S=(a+b)h÷2梯形高=梯形面积×2÷(上底+下底)h=2S÷(a+b)梯形上底=梯形面积×2÷高-下底a=2S÷h-b梯形下底=梯形面积×2÷高-上底b=2S÷h-a1平方千米=100公顷=1000000平方米1公顷=10000平方米1平方米=100平方分米=10000平方厘米第五单元分数的意义1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。3、真分数:分子小于分母的分数叫做真分数。真分数小于1。4、假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。6、公因数:几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。67、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。8、质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,它们之间最大的公因数是1,如8和9.9、公倍数、最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。10、关系11、最简分数:分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。12、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。13、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。14、比较分数的大小:分母相同时,分子大的分数大;分子相同时,分母小的分数大;分子分母都不同时,通分再比。15、分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。通7分。分数比大小。数学好玩1、图形中的规律:2、参试与猜想鸡兔同笼:方法:①列表法:一般采用取中间数列表的方法;②画图法;③假设法;④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。第六单元组合图形的面积1、组合图形:由几个简单的图形拼出来的图形,我们把它们叫做组合图形。2、计算组合图形的面积:一般运用的方法是“分割法”和“添补法”。(1)分割法:即将这个图形分割成几个基本的图形。分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。(2)添补法:即通过补上一个简单的图形,使整个图形变成一个大的规则图形。2、不规则图形面积的估计与计算:①数格子的方法;②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。第七单元可能性1、用分数表示可能性的大小(1)客观事件中,“不可能”出现的现象用数据表示为“可能性是0”;(2)客观事件中,“一定能”出现的现象用数据表示为“可能性是1”;(3)当可能性是相等的时候,用数据表述是“1/2”。