仿生四足机器人的研究:回顾与展望摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。一、导言代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学[1,2]。基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具有良好的机动性和运动稳定性,而典型的双足机器人,缺乏运动的稳定性。从系统和控制器的设计上来看,四足机器人也是一个不错的选择。另一方面,四足机器人在构建和维护上又比六足要简单。四足机器人比轮式或履带式机器人更加灵活,并比双足机器人稳定。因此,许多研究人员和组织在生物动态步态的启发下致力于四足机器人的研究,以使机器人具有高平衡能力和高负载能力。在一般情况下,为了提高运动稳定性,增加步行速度和运输能力,就需要具有大带宽和高输出功率的液压执行机构。机器人控制系统,即用来控制四足机器人动作,步态生成和转换,应在在未来得到研究和解决。本文组织如下:在第二部分回顾了四足仿生机器人的历史和驱动模式的发展趋势。第三部分介绍了四足机器人的发展趋势。然后,在第四部分分析了四足机器人的技术难点。第五部分介绍了中国山东大学正在开发的液压四足机器人。最后一部分是总结和展望未来的四足机器人。二、四足仿生机器人的历史本节回顾具有联合执行机构的四足仿生机器人的历史。我们首先关注基于仿生学的四足机器人的发展现状。然后回顾了四足机器人的驱动模式的发展趋势,特别详细介绍了液压驱动,这样一个提高了动力性能和负载能力的新型驱动模式。A.四足仿生机器人的历史四足机器人的调查始于20世纪60年代,而四足机器人的动态运动性能的研究则是从20世纪80年代开始的。MarcRaibert和他的同事们在一、二四条腿的机器人腿部运动方面取得了巨大的成功。20世纪60年代初,许多国外的科学家和研究人员致力于研究条腿式机器人。在1960年,Shigley提出采用联动机构,包括四杆机构、凸轮机构、缩放机构,作为腿式机器人的运动机构。腿部的运动由一组双摇杆机构控制[4]。McGhee和Frank于1966年制作了被称为“PhoneyPony”的四足机器。这是第一辆腿式的运载工具,在全电脑控制下自主行走。每条腿有两个自由度(DOFs)系统,并能进行简单的爬行运动,以及取决于选定状态图的对角线小跑。PhoneyPony具有十分重要的意义,因为它激发了McGhee去建立新的在步行机器人的历史上也起到重要作用的机器:OSUhexapod和AdaptiveSuspensionVehicle(ASV)[5]。在80年代初,美国麻省理工学院(MIT)的MarcRaibert,H.Miura,我以及日本东京大学的Shimoyama首次对步行机器人进行了系统的研究。MarcRaibert建立平面以及立体的独腿跳跃机器人。在Raibert关于跳跃机器人的三个控制原理的基础上,两足和四足可以跑可以跳的机器人随后也制造出来。这是四足机器人动态步态运动控制的一个里程碑[6]。在1984至1987年间,动态行走的四足机器人Collie-1和Collie-2已经研制成功,东京大学的ProfessorMiura和ProfessorShimoyama对此进行了更深入的研究。这些机器人可以实现小跑和踱步以及小跑和踱步之间的过渡[7]。严格地说,TITAN系列四足机器人并不属于仿哺乳动物的机器人,但它也是机器人发展史上的一个里程碑。TITANIII是一种在TITAN系列中具有立体收缩结构腿的四足机器人。它安装了了姿态传感器和触须传感器,并装有智能步态控制系统,来根据传感器的信息作出决定,以实现静态地形自适应步行[8]。随着四足机器人的进一步发张,在德国一个名为“BISAM”的四足步行机器人由R.Dillmann和他的研究小组制造出来。一种基于耦合振子的自适应控制方法被用来模拟BISAM周期运动,在BISAM的实验平台上,一种基于仿生的为实现动态稳定运动的自适应控制架构——鲁棒控制法被提了出来[9]。在1999年,基于中枢模式发生器(CPGs),Kimura和他的在京都技术研究所的同事们研究了四足机器人动态步行的方式。四足机器人Patrush以及后来的Tekken系列机器被开发出来。在Tekken系列中,独立的四足机器人TekkenII是由电机驱动,使用了机械弹簧和关节间的柔性连接,采用CPGs和反射,实现了动态行走[10]。在2009年,Kimura又开始研制四足机器人“Kotetsu”,采用基于腿部加载/卸载的相位调制的方法,挑战了一般使用自适应动态行走的四足运动控制方法。在1999年,一个动态稳定运行具有简单机械机构的四足机器人——ScoutII被麦吉尔大学机器人实验室(ARL)的MartinBuehler设计出来,用于探究哺乳动物的动态步态。自1998年以来,斯德哥尔摩皇家技术研究所一直在开发一台名为“Warp1”适应复杂地形的四足仿生机器人平台。此平台的目的是研究在复杂环境中的自动行走和实现动静态的步行运动[13]。在2001年左右,斯坦福大学的KennethWaldron和他的团队与美国俄亥俄州立大学合作设计出了KOLT机器人[14]。MarcRaibert和他的同事们于1992年创立了波士顿动力公司(BDI)。他们于2004年重新启动四足仿生机器人的研究项目。此外,在2005年第一代的四足机器人被命名为“BigDog”。在2008年开发了第二代的BigDog,如图1所示。第二代的BigDog是1m长,0.7米高,重约75公斤。它的每条腿有四个自由度,有由液压驱动的转动关节,在脚上还有一个基于气动弹簧的被动线性关节。BigDog可以在30度的坡上行走,以1.8米/秒的速度慢跑,有超过153公斤的有效载荷,可以穿行于森林和冰雪,在冰上滑动或侧面被踢后恢复平衡[15]。图1大狗机器人。2009年12月,BDI已被美国国防高级研究计划局(DARPA)授予合同,研发LS3——第一梯队支持系统。LS3是一个动态的机器人,可以去任何士兵和海军陆战队可以步行到达的地方。每个LS3将携带400磅的齿轮和足够行驶20英里持续24小时的燃料。LS3不需要驾驶员,因为它会自动跟随计算机视觉的指引,或者可以使用遥感和全球定位系统到达指定地点。BDI预计研发需要30个月,在2012年制成原型样机[16]。2011年3月1日,由于DARPA的资金援助,BDI也将研发猎豹机器人。猎豹机器人将有四条腿,一个灵活的脊椎,铰接式头部/颈部,也可能有尾巴。它将比现有的所有机器人或是人类跑的都快,急速地转弯来追逐或者是逃避,可以迅速从静止加速,也可以迅速停止[17]。如果猎豹机器人的原型可以实现,这将是机器人发展最重要的一个里程碑。最近,韩国的工业技术研究所和ROTEM公司的研究人员开发了液压驱动的四足步行机器人。这个机器人的所有关节都是由液压旋转驱动器驱动,可以携带很高的载荷,并可以在崎岖地面快速移动。这种类型的机器人实现了在实验环境中地形小跑的步态[18,19]。通过把液压装置与电动机相结合,意大利技术研究所的研究人员目前正在兴建的四足机器人(名为HYQ)可以执行高度动态的任务,比如双腿跳跃,单腿跳跃和奔跑[20]。到目前为止,机器人HYQ只是实现了对使用线性液压执行机构的单腿位置的控制。除了国外机器人的发展,上海交通大学的SunpeiMa于1996年首次在国内研制了一台名为JTUWM-III的机器人。JTUWM-III机器人的每条腿有三个活动关节和柔性关节。每个活动关节采用直流伺服电机来驱动[21]。清华大学的XiuliZhang和她的同事于2003年开发了Biobot(仿生机器人)。她提出了一个基于Matsuoka振荡器的全面CPG拓扑网络结构。此外,还实现了有节律的运动和不同步态间的转换。在CPG模型的基础上Biobot在现实环境中的运动能力也得到了提高[22]。在2006年,XuedongChen和他的同事们开发出了名为“MiniQuad”的模块化的机器人,通过改变其模块布局,它可以被重新配置到包括四足和六足结构在内的不同结构中,以实现不同的任务[23,24]。此外,其他四足机器人也已被一些研究机构和大学研制出来,例如被中科院智能机械研究所报道的由西北工业大学开发的名为TIM1的仿哺乳动物四足机器人,以及中科院自动化研究所研制的由电力驱动的大型四足机器人。B.四足机器人的驱动模式一般情况下,机器人的驱动方式包括电动,气动和液压。电动马达由于其技术先进性和低廉的价格的而成为机器人领域中最常见的驱动器。但是,减速齿轮是电动马达装置中最薄弱的环节之一,而且许多部件容易磨损。气动和液压非常相似,只不过气动采用了压缩气而不是液体来提供压力。气动系统的反应非常迅速。但空气的可压缩性导致系统的精确定位难以实现。液压油工作在21MPa的高压(部分系统可达70MPa)。这使得液压装置有非常高的比功率,高带宽,快响应以及一定程度上的精准性[25]。液压装置在大功率的应用中是非常高效的。近年来,许多研究人员一直在开发高度动态和重载任务四足机器人的液压驱动装置,因为它们的性质非常适合高度动态的腿式机器人。波士顿动力公司的Raibert研发的BigDog是最为先进的液压驱动四足机器人[15]。许多其他液压四足机器人也被研发出来或正在被研发。例如,韩国正在研制的液压驱动四足机器人P2,将被用于军事上[18,19]。意大利技术研究所的研究人员正在研制结合了液压和电动的HYQ机器人,以实现高度动态的任务,像双腿跳跃,单腿跳跃以及奔跑[20]。三、四足机器人的发展趋势四足仿生机器人的发展趋势主要由液压装置的驱动功率模式决定,也就是需要提高其功率重量比,实现快速响应,较强的鲁棒稳定性和长距离行走能力。在复杂地形的环境识别,信息融合,步态生成,位置反馈调节,四肢躯干的轨迹规划以及稳定控制策略中的关键技术仍然需要更深入的研究。这种发展可以使四足机器人推广到实际应用中。具体的发展趋势如下1)仿生:仿生造型和结构,仿生步态千年的演化后,哺乳类动物的骨骼结构和步态及其独特的行走模式已达到适应环境的最高水平。因此,哺乳动物的身体结构,自由度和关节结构是仿生机器人的最佳参考。为了使设计的四足仿生机器人如哺乳动物般更加灵活和高效,结构和控制理论成为一个重要的发展趋势。2)重量轻,高载荷:高功率密度驱动装置具有功率密度高,重量轻和高负载的驱动装置是机器人研究领域中基础的关键技术。此外,它是四足仿生机器人实现高动态,高适应性和高负载的重大突破的先决条件和核心技术。3)高机