1复习1.定积分定义:4.微积分基本公式2.变上限定积分函数xadttfx)()(3.变上限积分函数的导数)()(xfx)()()(aFbFdxxfbaiinixf)(lim10badxxf)(2第三节定积分的换元积分法内容提要1.定积分的换元积分法;2.定积分的常用公式。教学要求1.熟练掌握定积分的换元积分;2.掌握定积分的几个常用公式3一、第一类换元积分法上连续,在],[)()]([baxxfbabaxdxfdxxxf)()]([)()]([abxF)]([注意:这里没有引进新的积分变量,因而积分上、下限没有变化。这种换元法对应着不定积分的凑微分法设被积函数)]([xF且的原函数,那么为)()]([xxf410100.12dxx)(求10100)12(dxx)12()12(2110100xdx解例110101])12(1011[21x])1(1[202110110110115.ln1dxxxe求例2解)(lnln1xdxedxxxe1lnex12][ln21]1ln[ln2122e21)(212101022xdedxxexx10221xe.102dxxex例3求解102)(212xdex1121e6dxxx2/2/3coscosxx3coscos,20,sincos,02,sincosxxxxxx当当dxxx2/2/3coscosxdxxdxcoscoscoscos2/002/2/02302/23cos32cos32xx343232例4求解利用定积分性质,得)cos1(cos2xxxxsincosxdxxxdxxsincossincos2/002/7二、第二类换元积分法CtFdtttfCxFdxxf)]([)()]([,)()(得那么有不定积分换元法设badtttfdxxfbabatxtttxbaxfy)()]([)(,)(,)(],[)(),(],[)(],[)(那么上变化,且有在时,变到从当数上是单值且有连续的导在区间上连续,函数在区间如果函数证明dtttFFFaFbFdxxfba)()]([)]([)]([)()()(于是有注意:(1)在定积分的第二类换元积分法中引了新的积分变量,因而积分上、下限发生了变化.8(2)用)(tx把变量x换成新变量t时,积分限也相应的改变.换元必换限.(原)上限对(新)上限,(原)下限对(新)下限.求出)()]([ttf的一个原函数)(t后,不必象计算不定积分那样再要把)(t变换成原变量x的函数,而只要把新变量t的上、下限分别代入)(t然后相减就行了.(3)(4)该公式的作用是可以简化计算.dxxfba)(dtttf)()]([改变口诀是:9例5.1140dxx求定积分,tx令dxx4011dtt)111(220时,当0x解dttt2012dttt201112)1(11222020tdtdt02)]1[ln(24t3ln24.2,22tdtdtdxtx则;0t时,当4x.2t10.sincos205xdxx求解一令,cosxu2x,0u0x,1u205sincosxdxx015duu1066u.61,sinxdxdu例6解二.sincos205xdxx)(coscosxxd205206]6cos[x61显然,解法二简单610说明:不换元不换限,换元必换限.11例7计算解.022adxxa原式tdtadxtaxcos,sin则令dtta2022cosdtta202)2cos1(22022sin212tta.4)02(222aax0at0212dxxx053sinsin解xx53sinsin)sin1(sin23xxdxxx023|cos|sindxxx053sinsindxxx2023cossindxxx)cos(sin223|cos|sin23xx)(sinsin2023xdx)(sinsin223xdx2025sin52x225sin52x54例8计算13证明:设)(xf在对称区间],[aa上连续,且有①)(xf为偶函数,则aaadxxfdxxf0)(2)(;②)(xf为奇函数,则aadxxf0)(.偶奇)()(2)(0)(0xfdxxfxfdxxfaaa即a-axy0)(xfyoxy-aa)(xfy1.三、定积分的几个常用公式140)(adxxf0)(adttfadttf0)(①)(xf为偶函数,则),()(xfxfaaaadxxfdxxfdxxf00)()()(;)(20adxxf②)(xf为奇函数,则),()(xfxfaaaadxxfdxxfdxxf00)()()(.0证,)()()(00aaaadxxfdxxfdxxf在0)(adxxf中令tx,证毕x-a0ta0,)(0adxxf,)()()(00aaaadxxfdxxfdxxf15利用奇偶函数在对称区间的积分的特性,积分计算可能简化,甚至不经过计算即可得出结果.例如:113cosxdxx.011221arctandxxxx.0例9计算dxxxx2/2/2sin1cos解0xdxsinsin1122/02dxxx2/02sin1cos22sinarctan22/0x奇函数偶函数dxxxdxxxdxxxx2/2/22/2/22/2/2sin1cossin1sin1cos16设f(x)是以T为周期的周期函数,且可积,则对任一实数a,有dxxfdxxfTTaa0)()(dxxfdxxfdxxfdxxfTaTTaTaa)()()()(00Ttxdtdx0tat)()(tfTtfdtTtfdxxfTaTa0)()(dttfa)(0dttfdxtfdxtfdxxfaTaTaT000)()()(证由定积分性质,有对右边第三个积分,令,则Tax时,,当Tx当时,并注意到,得于是2.dxtfT0)(adttf0)(17112sinxdx112sinxdx例10求解函数f(x)=sin2x是以π为周期的周期函数,故0)2(2sin21xxd02sinxdx02cos21x0181.定积分的换元法dxxfba)(dtttf)()]([小结主要作用:1.简化定积分的计算.2.证明一些等式.作业:P105-1061的奇数号题2.定积分的几个等式偶奇)()(2)(0)(0xfdxxfxfdxxfaaadxxfdxxfTTaa0)()(19.cos1sin02dxxx求02cos1sindxxx02)(coscos11xdx解)]0arctan(cos)s[arctan(co102)cos(cos11xdx0)arctan(cosx2]1arctan)1[arctan(20.12102dxxx求21021dxxx21022)1(121xdx解221021221dxxx01212x23121.ln21xdx求定积分,,lndxdvxu令21lnxdx3解12ln2dxxxxx21112ln1212lnxxx,,xvxdxdu则224计算解.)(arcsin103dxx,arcsintx令tdttcos203原式203sintdt202203sin3sintdtttt2023cos38tdt)cos2cos(38202023tdtttt203sin68ttd)sinsin(6820203tdttt.6383该题说明有时需综合运用各种方法.如先换元再分部,分部与换元都可多次应用.x01t02,sintx则tdtdxcos231122112dxxx102144dxx11211cosdxxxx利用奇偶函数在对称区间的积分的特性,积分计算可能简化,甚至不经过计算即可得出结果.例如:113cosxdxx.011221arctandxxxx.0奇函数5计算解原式偶函数1022114dxxx10222)1(1)11(4dxxxx102)11(4dxx.4单位圆的面积.11cos21122dxxxxx24证,))(()(baabdttfdxxbaf6证明dxxbafdxxfbaba)()(dtdxtbaxtxba,,则令axbx,at,btbabadxxfdttf)()(证毕25,,12xexxf00xxdxxf31)2(,2tx)()2(tfxfdtdx1x1t3x1tdxxf31)2(10012)1(dtedttt1001331tett7设,求解设则,当时,当时,于是11)(dttf1001)()(dttfdttf.31e