专题求数列通项公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

类型一观察法:已知前几项,写通项公式1411111--,23422020,例:写出下面数列的一个通项公式,使它的前项分别是下列各项:(),,,(),,,11(1)1(2)(1)1nnnnana解:()类型二、前n项和法已知前n项和,求通项公式11(1)(2)nnnSnaSSn设﹛an﹜的前n项和为Sn,且满足Sn=n2+2n-1,求﹛an﹜的通项公式.例2:2112122112221[(1)2(1)1]21212nnnnnsnnnasnassnnnnnna解:当时当时12nn例2:在﹛an﹜中,已知a1=1,an=an-1+n(n≥2),求通项an.练:111311,3(2)2nnnnnaaaanan已知中,证明:类型三、累加法形如的递推式1()nnaafn11223343221123.......32解:以上各式相加nnnnnnnnaanaanaanaanaaaan1a(234)(n+2)(n-1)=1+2得an例4:12,3,.nnnnnaaaaa1已知中,求通项练:122,2,.nnnnaaaaan1已知中,求通项类型四、累乘法形如的递推式1()nnafna1234123123423221232113,3,3,3.......3,33333323解:以上各式相乘得nnnnnnnnnnnnnnnaaaaaaaaaaaaaa123(-1)(-1)2(-1)22323nnnnnna例5:111,21.nnnnaaaaa数列满足,求类型五、形如的递推式1nnapaq分析:配凑法构造辅助数列11-11112112112(1)1211121112221解:是以为首项,以为公比的等比数列,nnnnnnnnnnnnnaaaaaaaaaaaa例6:111,,21nnnnnaaaaaa数列满足:求通项公式取倒法构造辅助数列类型六、形如的递推式1nnnpaaqap111n11n12111221a112aannnnnnaaaaaa解:是以为首项,以为公差的等差数列111(1)22121nnnnnaaan类型七、相除法形如的递推式11nnnaAaBA例7:1113,33,nnnnaaaaan数列满足:求通项公式.1111133133133-11333nnnnnnnnnnnnnaaaaaaaannan解:是以为首项,以为公差的等差数列()类型八、形如的递推式11nnnnaapaa例8:1112,0,2.nnnnnnaaaaaaa已知且,求11111112211-211545-1(-2)-222245nnnnnnnnnaaaaaaaannnaaan解:是以为首项,以为公差的等差数列()求数列的通项公式类型方法1、已知前几项观察法2、已知前n项和Sn前n项和法3、形如的递推式累加法4、形如的递推式累乘法5、形如的递推式待定系数法6、形如的递推式取倒法7、形如的递推式相除法1()nnaafn1()nnafna1nnapaq1nnnpaaqap11nnnaAaBA构造辅助数列11nnnnaapaa

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功