Page21.定积分的换元积分法2.定积分的分部积分法第三节换元法和分部积分法Page3定理假设(1))(xf在],[ba上连续;(2)函数)(tx在],[上是单值的且有连续导数;(3)当t在区间],[上变化时,)(tx的值在],[ba上变化,且a)(、b)(,则有dtttfdxxfba)()]([)(.一、换元公式Page4证设)(xF是)(xf的一个原函数,),()()(aFbFdxxfba)],([)(tFtdtdxdxdFt)()()(txf),()]([ttf),()()()]([dtttf)(t是)()]([ttf的一个原函数.Page5a)(、b)(,)()()]([)]([FF),()(aFbF)()()(aFbFdxxfba)()(.)()]([dtttf注意当时,换元公式仍成立.Page6用)(tx把变量x换成新变量t时,积分限也相应的改变.应用换元公式时应注意:(1)(2)求出)()]([ttf的一个原函数)(t后,不必还原成变量x的函数,只要把t的上、下限分别代入)(t然后相减就行了.换元要换限换元不还原Page7应用换元公式时应注意:(3))(tx要求是单值函数。(4)定积分换元法可以用来证明积分等式,关键在于)(tx的构造。这与积分的上下限以及被积函数的形式有关。Page8例1计算.sincos205xdxx解令,cosxt2x,0t0x,1t205sincosxdxx015dtt1066t.61,sinxdxdt换元要换限凑元不换限tPage9例1计算.sincos205xdxx解250cossinxxdx换元要换限凑元不换限250cos(cos)xdx6/201cos|6x11(01)66xPage10例2计算解.sinsin053dxxxxxxf53sinsin)(23sincosxx053sinsindxxx023sincosdxxx2023sincosdxxx223sincosdxxx2023sinsinxdx223sinsinxdx2025sin52x225sin52x.54凑元不换限Page112/053sinsindxxx令:x=-t,sinsin22/053dxxx21,sin:ududxux令545421210102/310253uduuuduuu2/53sinsindxxx.sinsin053dxxx例2计算035/2sinsinttdt换元要换限Page12例3计算解.)ln1(ln43eexxxdx原式43)ln1(ln)(lneexxxd43)ln1(ln)(lneexxxd432)ln(1ln2eexxd43)lnarcsin(2eex.6凑元不换限Page13解令,xt则,2,2tdtdxtx21)1(2ttdt原式21)]1ln([ln2ttdttt)111(22134ln2解:令154)42(4210dttttdtdxtxxt2,1,1241)1(xxdx例41)计算dxxx110例42)计算02112()()tttdt原式换元要换限换元要换限Page14例5计算解aadxxax022)0(.1令20,sinttaxax,2t0x,0t,costdtadx原式2022)sin1(sincosdttatata20cossincosdtttt20cossinsincos121dttttt20cossinln21221tt.4换元要换限Page15例6当)(xf在],[aa上连续,则(1)aaadxxfxfdxxf0)()()((2))(xf为偶函数,则aaadxxfdxxf0)(2)(;(3))(xf为奇函数,则aadxxf0)(.性质Page16证,)()()(00aaaadxxfdxxfdxxf在0)(adxxf中令tx,0)(adxxf0)(adttf,)(0adttfPage170)(adxxf0)(adttf,)(0adttf①)(xf为偶函数,则),()(tftfaaaadxxfdxxfdxxf00)()()(;)(20adttf②)(xf为奇函数,则),()(tftfaaaadxxfdxxfdxxf00)()()(.0Page18奇函数例7计算解.11cos21122dxxxxx原式1122112dxxx11211cosdxxxx偶函数1022114dxxx10222)1(1)11(4dxxxx102)11(4dxx102144dxx.4单位圆的面积Page19例8若)(xf在]1,0[上连续,证明(1)2200)(cos)(sindxxfdxxf;由此计算20cossinsindxxxx(2)00)(sin2)(sindxxfdxxxf.由此计算02cos1sindxxxx.2txtxPage2020)(sindxxf022sindttf20)(cosdttf;)(cos20dxxf证(1)设tx2,dtdx0x,2t2x,0t20sinsincosxIdxxx20coscossinxIdxxx2200sincossincossincosxxIIdxdxxxxx201dx220sinsincos4xIdxxxPage21.)(sin2)(sin00dxxfdxxxf(2)设tx,dtdx0x,tx,0t0)(sindxxxf0)][sin()(dttft,)(sin)(0dttft0)(sindttf0)(sindtttf0)(sindxxf,)(sin0dxxxfPage2202cos1sindxxxx02cos1sin2dxxx02)(coscos112xdx0)arctan(cos2x.42)44(2Page23几个特殊积分、定积分的几个等式定积分的换元法dxxfba)(dtttf)()]([二、小结Page24思考题指出求2221xxdx的解法中的错误,并写出正确的解法.解令,sectx,4332:t,sectantdttdx2221xxdxtdtttttansectansec14332dt4332.12Page25思考题解答计算中第二步是错误的.txsec,43,32t,0tant.tantan12ttx正确解法是2221xxdxtxsectdtttttansectansec14332dt4332.12Page331.定积分的换元积分法2.定积分的分部积分法第三节换元法和分部积分法Page34设函数)(xu、)(xv在区间ba,上具有连续导数,则bababadxuvuvdxvu,或bababavduuvudv.定积分的分部积分公式推导,vuvuuv,)(babauvdxuv,bababadxvudxvuuv.bababavduuvudv或一、分部积分公式,dxvuuvdxvubababaPage35例1计算.arcsin210xdx解令,arcsinxu,dxdxv,12xdxdu,xv210arcsinxdx210arcsinxx21021xxdx621)1(112120221xdx1221021x.12312则Page36例2计算解.2cos140xxdx,cos22cos12xx402cos1xxdx402cos2xxdxxdxtan24040tan21xxxdxtan214040secln218x.42ln8Page37例3计算解.)2()1ln(102dxxx102)2()1ln(dxxx1021)1ln(xdx102)1ln(xx10)1ln(21xdx32lndxxx101121xx211110)2ln()1ln(32lnxx.3ln2ln35Page38例4设求解21,sin)(xdtttxf.)(10dxxxf因为ttsin没有初等形式的原函数,无法直接求出)(xf,所以采用分部积分法10)(dxxxf102)()(21xdxf102)(21xfx102)(21xdfx)1(21f102)(21dxxfxPage3921,sin)(xdtttxf,sin22sin)(222xxxxxxf10)(dxxxf)1(21f102)(21dxxfx102sin221dxxx1022sin21dxx102cos21x).11(cos21,0sin)1(11dtttfPage40例5证明定积分公式2200cossinxdxxdxInnnnnnnnnnnnn,3254231,22143231为正偶数为大于1的正奇数证设,sin1xun,sinxdxdv,cossin)1(2xdxxndun,cosxvPage41dxxxnxxInnn2202201cossin)1(cossinx2sin10dxxndxxnInnn22002sin)1(sin)1(nnInIn)1()1(221nnInnI积分关于下标的递推公式nI4223nnInnI,直到下标减到0或1为止Page42,214365223221202ImmmmIm,3254761222122112ImmmmIm),2,1(m,2200dxI,1sin201xdxI,221436522322122mmmmIm.325476122212212mmmmIm于是(1)!!!!2nn(1)!!!!nnPage43定积分的分部积分公式.bababavduuvudv二、小结(注意与不定积分分部积分法的区别)Page44思考题设)(xf在1,0上连续,且1)0(f,3)2(f,5)2(f,求10)2(dxxfx.Page45思考题解答10)2(dxxfx10)2(21xfxd1010)2(21)2(21dxxfxfx10)2(41)2(21xff)0()2(4