目录实验一分析太阳黑子数序列实验二模拟AR模型实验三模拟MA模型和ARMA模型实验四分析化工生产量数据实验五模拟ARIMA模型和季节ARIMA模型实验六分析美国国民生产总值的季度数据实验七分析国际航线月度旅客总数数据太阳黑子年度数据美国国民收入数据化工生产过程的产量数据国际航线月度旅客数据实验一分析太阳黑子数序列一、实验目的:了解时间序列分析的基本步骤,熟悉SAS/ETS软件使用方法。二、实验内容:分析太阳黑子数序列。三、实验要求:了解时间序列分析的基本步骤,注意各种语句的输出结果。四、实验时间:3学时。五、实验软件:SAS系统。六、实验步骤1、开机进入SAS系统。2、创建名为exp1的SAS数据集,即在窗中输入下列语句:dataexp1;inputa1@@;year=intnx(‘year’,’1jan1742’d,_n_-1);formatyearyear4.;cards;输入太阳黑子数序列(见附表)run;3、保存此步骤中的程序,供以后分析使用(只需按工具条上的保存按钮然后填写完提问后就可以把这段程序保存下来即可)。4、绘数据与时间的关系图,初步识别序列,输入下列程序:procgplotdata=exp1;symboli=splinev=starh=2c=green;plota1*year;run;5、提交程序,在graph窗口中观察序列,可以看出此序列是均值平稳序列。6、识别模型,输入如下程序。procarimadata=exp1;identifyvar=a1nlag=24;run;47、提交程序,观察输出结果。初步识别序列为AR(3)模型。8、估计和诊断。输入如下程序:estimatep=3;run;9、提交程序,观察输出结果。假设通过了白噪声检验,且模型合理,则进行预测。10、进行预测,输入如下程序:forecastlead=6interval=yearid=yearout=out;run;procprintdata=out;run;11、提交程序,观察输出结果。12、退出SAS系统,关闭计算机。实验二模拟AR模型一、实验目的:熟悉各种AR模型的样本自相关系数和偏相关系数的特点,为理论学习提供直观的印象。二、实验内容:随机模拟各种AR模型。三、实验要求:记录各AR模型的样本自相关系数和偏相关系数,观察各种序列图形,总结AR模型的样本自相关系数和偏相关系数的特点四、实验时间:3学时。五、实验软件:SAS系统。六、实验步骤1、开机进入SAS系统。2、模拟实根情况,模拟ttttz+z−z=a−1−20.60.4过程。3、在edit窗中输入如下程序:dataa;x1=0.5;x2=0.5;n=-50;doi=-50to250;a=rannor(32565);x=a-0.6*x1+0.4*x2;x2=x1;x1=x;n=n+1;ifi0thenoutput;end;run;4、观察输出的数据,输入如下程序,并提交程序。procprintdata=a;6varx;procgplotdata=a;symboli=splinec=red;plotx*n;run;5、观察样本自相关系数和偏相关系数,输入输入如下程序,并提交程序。procarimadata=a;identifyvar=xnlag=10outcov=exp1;run;procgplotdata=exp1;symboli=needlewidth=6;plotcorr*lag;run;procgplotdata=exp1;symboli=needlewidth=6;plotpartcorr*lag;run;6、作为作业把样本自相关系数和偏相关系数记录下来。7、估计模型参数,并与实际模型的系数进行对比,即输入如下程序,并提交。procarimadata=a;identifyvar=xnlag=10;run;estimatep=2;run;8、模拟虚根情况,模拟ttttz−z+z=a−1−20.5过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成)。9、模拟AR(3)模型,模拟tttttz−z+z−z=a−1−2−30.40.30.2过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成).710、回到graph窗口观察各种序列图形的异同11、退出SAS系统,关闭计算机.实验三模拟MA模型和ARMA模型一、实验目的:熟悉各种MA模型和ARMA模型的样本自相关系数和偏相关系数的特点,为理论学习提供直观的印象。二、实验内容:随机模拟各种MA模型和ARMA模型。三、实验要求:记录各MA模型和ARMA模型的样本自相关系数和偏相关系数,观察各序列的异同,总结MA模型和ARMA模型的样本自相关系数和偏相关系数的特点四、实验时间:4学时。五、实验软件:SAS系统。六、实验步骤1、开机进入SAS系统。2、模拟0,012θθ情况,模拟ttx=(1+0.65B+0.24B2)a过程。3在edit窗中输入如下程序:dataa;a1=0;a2=0;don=-50to250;a=rannor(32565);x=a+0.65*a1+0.24*a2;a2=a1;a1=a;ifn0thenoutput;end;run;4、观察输出的数据序列,输入如下程序,并提交程序。procgplotdata=a;symboli=spline;9plotx*n;run;5、观察样本自相关系数和偏相关系数,输入输入如下程序,并提交程序。procarimadata=a;identifyvar=xnlag=10outcov=exp1;run;procgplotdata=exp1;symbol1i=needlec=red;plotcorr*lag=1;run;procgplotdata=exp1;symbol2i=needlec=green;plotpartcorr*lag=2;run;6、作为作业把样本自相关系数和偏相关系数记录下来。7、估计模型参数,并与实际模型的系数进行对比,即输入如下程序,并提交。procarimadata=a;identifyvar=xnlag=10;run;estimateq=2;run;8、模拟0,012θθ情况,模拟ttx=(1−0.65B−0.24B2)a过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成)。9、模拟0,012θθ情况,模拟ttx=(1−0.65B+0.24B2)a过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成)。10、模拟0,012θθ情况,模拟ttx=(1+0.65B−0.24B2)a过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成)。1011、模拟ARMA模型,模拟12120.750.550.30.4−−−−++=+−−ttttttxxxaaa过程。重复步骤3-7即可(但部分程序需要修改,请读者自己完成).12、回到graph窗口观察各种序列图形的异同。13、退出SAS系统,关闭计算机.实验四分析化工生产量数据一、实验目的:进一步熟悉时间序列建模的基本步骤,掌握用SACF及SPACF定模型的阶的方法。二、实验内容:分析化工生产过程的产量序列。三、实验要求:掌握ARMA模型建模的基本步骤,初步掌握数据分析技巧。写出实验报告。四、实验时间:3学时。五、实验软件:SAS系统。六、实验步骤1、开机进入SAS系统。2、创建名为exp2的SAS数据集,即在窗中输入下列语句:dataexp2;inputx@@;n=_n_;cards;输入化工生产产量数据序列(见附表);run;3、保存此步骤中的程序,供以后分析使用(只需按工具条上的保存按钮然后填写完提问后就可以把这段程序保存下来即可)。4、绘数据与时间的关系图,初步识别序列,输入下列程序:procgplotdata=exp2;symboli=splinev=starh=2c=green;plotx*n;run;5、提交程序,在graph窗口中观察序列,可以看出此序列是均值平稳序列。6、识别模型,输入如下程序。12procarimadata=exp2;identityvar=xnlag=12;run;7、提交程序,观察输出结果,发现二阶样本自相关系数和一阶的样本偏相关系数都在2倍的标准差之外,那么我们首先作为一阶AR模型估计,输入如下程序:estimateplotp=1;run;8、提交程序,观察输出结果,发现残差能通过白噪声检验,但它的二阶的样本偏相关系数比较大,那么我们考虑二阶AR模型。输入如下程序:estimateplotp=2;run;9、提交程序,观察输出结果,发现残差样本自相关系数和样本偏相关系数都在2倍的标准差之内。且能通过白噪声检验。比较两个模型的AIC和SBC,发现第二个模型的AIC和SBC都比第一个的小,故我们选择第二个模型为我们的结果。10、记录参数估计值,写出模型方程式。11、进行预测,输入如下程序:forecastlead=12out=out;run;procprintdata=out;run;12、提交程序,观察输出结果。13、退出SAS系统,关闭计算机。实验五模拟ARIMA模型和季节ARIMA模型一、实验目的:熟悉各种ARIMA模型的样本自相关系数和偏相关系数的特点,区别各种ARIMA模型的图形,为理论学习提供直观的印象。二、实验内容:随机模拟各种ARIMA模型。三、实验要求:记录各ARIMA模型的样本自相关系数和偏相关系数观察各序列图形的异同,总结ARIMA模型的样本自相关系数和偏相关系数的特点四、实验时间:3学时。五、实验软件:SAS系统。六、实验步骤2、开机进入SAS系统。2、模拟ARIMA(0,1,1)过程,模拟110.8−−=+−ttttxxaa过程。3、创建数据集,在edit窗中输入如下程序:dataa;x1=0.9;a1=0;don=-50to250;a=rannor(32565);x=x1+a-0.8*a1;x1=x;a1=a;ifn0thenoutput;end;run;4、观察输出的数据序列,输入如下程序:。procgplotdata=a;symboli=spline;14plotx*n;run;5、提交程序,在Graph窗口中观察图形。6、观察样本自相关系数和偏相关系数,输入输入如下程序:procarimadata=a;identifyvar=xnlag=10outcov=exp1;run;procgplotdata=exp1;symbol1i=needlec=red;plotcorr*lag=1;run;procplotdata=exp1;symbol2i=needlec=green;plotpartcorr*lag=2;run;7、提交程序,发现自相关系数成缓慢下降的趋势,说明要做差分运算,做一阶差分运算,输入如下程序:procarimadata=a;identityvar=x(1)nlag=24;run;8、提交程序,观察样本自相关系数与样本偏相关系数,发现自相关系数1阶截尾,故判断差分后序列为MA(1)模型。进行模型参数估计,输入如下程序:estimateq=1plot;run;9、提交程序,并观察残差图,发现模型拟合完全。10、写出模型的方程,并与真实模型对比。11、模拟ARIMA(1,1,0)模型,模拟tt(1−0.5B)(1−B)z=a过程。重复步骤3-10即可(但部分程序需要修改,请读者自己完成)。1512模拟ARIMA(p,d,q)(P,D,Q)s模型,模拟tt(1−B)(1−B12)x=(1−0.4B)(1−0.6B12)a模型,即12ARIMA(0,1,1)(0,1,1)模型。13、创建数据集,在edit窗中输入如下程序:datac;x1=0.9;x2=0;x3=0;x4=0;x5=0;x6=0;x7=0;x8=0;x9=0;x10=0;x11=0;x12=0;x13=0;a1=0;a2=0;a3=0;a4=0;a5=0;a6=0;a7=0;a8=0;a9=0;a10=0;a11