初中数学隐圆模型题型归纳

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中考数学几何模型:隐圆模型【点睛1】触发隐圆模型的类型(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A、B、C、D四点共圆备注:点A与点C在线段AB异侧(5)四点共圆模型②固定线段AB所对同侧动角∠P=∠C原理:弦AB所对同侧圆周角恒相等则A、B、C、P四点共圆备注:点P与点C需在线段AB同侧【点睛2】圆中旋转最值问题条件:线段AB绕点O旋转一周,点M是线段AB上的一动点,点C是定点(1)求CM最小值与最大值(2)求线段AB扫过的面积(3)求ABCS△最大值与最小值作法:如图建立三个同心圆,作OM⊥AB,B、A、M运动路径分别为大圆、中圆、小圆结论:①CM1最小,CM3最大②线段AB扫过面积为大圆与小圆组成的圆环面积③ABCS△最小值以AB为底,CM1为高;最大值以AB为底,CM2为高典题探究启迪思维探究重点例题1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.A'NMABCD【分析】考虑△AMN沿MN所在直线翻折得到△A’MN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时A’C的值最小.构造直角△MHC,勾股定理求CM,再减去A’M即可,答案为7-1.A'NMABCDDCBAMNA'HA'NMABCD变式练习1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.ABCEFP【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FH⊥AB,与圆的交点即为所求P点,此时点P到AB的距离最小.由相似先求FH,再减去FP,即可得到PH.答案为1.2.ABCEFPHPFECBA例题2.如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.lPOCBA【分析】连接OP,根据△APB为直角三角形且O是斜边AB中点,可得OP是AB的一半,若AB最小,则OP最小即可.连接OC,与圆C交点即为所求点P,此时OP最小,AB也取到最小值.答案为4.lPOCBAABCOPl变式练习2.如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.QABCDEFP答案为8.【分析】F点轨迹是以E点为圆心,EA为半径的圆,作点D关于BC对称点D’,连接PD’,PF+PD化为PF+PD’.连接ED’,与圆的交点为所求F点,与BC交点为所求P点,勾股定理先求ED‘,再减去EF即可.D'PFEDCBAQQABCDEFPD'例题3.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H,若正方形边长为2,则线段DH长度的最小值是________.HGABCDEF【分析】根据条件可知:∠DAG=∠DCG=∠ABE,易证AG⊥BE,即∠AHB=90°,所以H点轨迹是以AB为直径的圆弧当D、H、O共线时,DH取到最小值,勾股定理可求.答案为51αααHGABCDEFOFEDCBAGHαααHABCDO变式练习3.如图,Rt△ABC中,AB⊥BC,AB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.PABC答案为424【分析】∵∠PBC+∠PBA=90°,∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴P点轨迹是以AB为直径的圆弧.当O、P、C共线时,CP取到最小值,勾股定理先求OC,再减去OP即可.OPABCCBAOP例题4.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为_________.OEDCBA【分析】连接CE,由于CD为直径,故∠CED=90°,考虑到CD是动线段,故可以将此题看成定线段CB对直角∠CEB.取CB中点M,所以E点轨迹是以M为圆心、CB为直径的圆弧.连接AM,与圆弧交点即为所求E点,此时AE值最小,2210222262AEAMEM.OEDCBAMABCDEOMECBA变式练习4.如图,正方形ABCD的边长为4,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为.GFEDCBA【分析】首先考虑整个问题中的不变量,仅有AE=CF,BG⊥EF,但∠BGE所对的BE边是不确定的.重点放在AE=CF,可得EF必过正方形中心O点,连接BD,与EF交点即为O点.∠BGO为直角且BO边为定直线,故G点轨迹是以BO为直径的圆.记BO中点为M点,当A、G、M共线时,AG取到最小值,利用Rt△AOM勾股定理先求AM,再减去GM即可.答案为102ABCDEFGOABCDEFGMOABCDEFGMOABCDEFG例题5.如图,等边△ABC边长为2,E、F分别是BC、CA上两个动点,且BE=CF,连接AE、BF,交点为P点,则CP的最小值为________.EFCBAP答案为233【分析】由BE=CF可推得△ABE≌△BCF,所以∠APF=60°,但∠APF所对的边AF是变化的.所以考虑∠APB=120°,其对边AB是定值.所以如图所示,P点轨迹是以点O为圆心的圆弧.(构造OA=OB且∠AOB=120°)当O、P、C共线时,可得CP的最小值,利用Rt△OBC勾股定理求得OC,再减去OP即可.60°EFCBAP120°EFCBAP120°MOPABCFE120°CBAPO120°变式练习5.在△ABC中,AB=4,∠C=60°,∠A∠B,则BC的长的取值范围是________.【分析】先作图,如下4ABC60°条件不多,但已经很明显,AB是定值,∠C=60°,即定边对定角.故点C的轨迹是以点O为圆心的圆弧.(作AO=BO且∠AOB=120°)题意要求∠A∠B,即BCAC,故点C的轨迹如下图.当BC为直径时,BC取到最大值为833,考虑∠A为△ABC中最大角,故BC为最长边,BCAB=4.无最小值.O120°60°CBAABC60°120°OO120°CBAO120°CBA例题6.如图,在四边形ABCD中,∠BCD=90°,AC为对角线,过点D作DF⊥AB,垂足为E,交CB延长线于点F,若AC=CF,∠CAD=∠CFD,DF﹣AD=2,AB=6,则ED的长为.【解答】解:∵∠CAD=∠CFD,∴点A,F,C,D四点共圆,∴∠FAD+∠DCF=180°,∠FAC=∠FDC,∵∠DCF=90°,∴∠FAD=90°,∵AC=FC,∴∠FAC=∠AFC,∵DF⊥AB,∴∠ABF+∠BFE=∠CDF+∠BFE=90°,∴∠ABF=∠CDF,∴∠AFB=∠ABF,∴AF=AB=6,∵DF﹣AD=2,∴DF=AD+2,∵DF2=AF2+AD2,∴(2+AD)2=62+AD2,解得:AD=8,∴DF=10,∵∠FAD=90°,AE⊥DF,∴△ADE∽△DAF,∴=,∴DE===,故答案为:.达标检测领悟提升强化落实1.如图,AB是半圆O的直径,点C在半圆O上,AB=10,AC=8.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.OEDCBA答案为:2134【分析】E是动点,E点由点C向AD作垂线得来,∠AEC=90°,且AC是一条定线段,所以E点轨迹是以AC为直径的圆弧.当B、E、M共线时,BE取到最小值.连接BC,勾股定理求BM,再减去EM即可.MOEDCBAABCEOM2.如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3,5,求三角形OBE的面积.OABCDE3.如图,正方形ABCD的边长是4,点E是AD边上一动点,连接BE,过点A作AF⊥BE于点F,点P是AD边上另一动点,则PC+PF的最小值为________.ABCDEFP答案为:2132【分析】∠AFB=90°且AB是定线段,故F点轨迹是以AB中点O为圆心、AB为直径的圆.考虑PC+PF是折线段,作点C关于AD的对称点C’,化PC+PF为PC’+PF,当C’、P、F、O共线时,取到最小值.OPFEDCBAC'ABCDFPO4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,CE⊥AD于E,EF⊥AB交BC于点F,则CF的最大值是_________.FEDCBA【分析】∠AEC=90°且AC为定值,故E点轨迹是以AC为直径的圆弧.考虑EF⊥AB,且E点在圆上,故当EF与圆相切的时候,CF取到最大值.连接OF,易证△OCF≌△OEF,∠COF=30°,故CF可求.答案为33OFEDCBAOFECBAOFECBA5.如图,△ABC为等边三角形,AB=3,若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为_________.ABCP答案为36.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是﹣2≤BE<3.【解答】解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),∵AB=5,AC=4,∴BC=3,CM=2,则BM===,∴BE长度的最小值BE′=BM﹣ME′=﹣2,BE最长时,即E与C重合,∵BC=3,且点E与点C不重合,∴BE<3,综上,﹣2≤BE<3,7.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为8.【解答】解:解:如图,连接CE,∴∠CED=∠CEA=90°,∴点E在以AC为直径的⊙Q上,∵AC=10,∴QC=QE=5,当点Q、E、B共线时BE最小,∵BC=12,∴QB==13,∴BE=QB﹣QE=8,∴BE的最小值为8,故答案为8.8.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为2﹣2.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功