环球优学八年级(上)典型题一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.5.5C.7D.3.53.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.5.(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cmB.10cmC.12cmD.22cm7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.188.(2013•烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(﹣3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+49.(2012•西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)210.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________.12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.13.(2013•枣庄)若,,则a+b的值为_________.14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=_________.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=_________.16.(2013•盐城)使分式的值为零的条件是x=_________.17.(2013•南京)使式子1+有意义的x的取值范围是_________.18.(2012•茂名)若分式的值为0,则a的值是_________.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,an=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;如图3,若∠ACD=120°,则∠AFB=_________;(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.环球优学八年级(上)典型题参考答案与试题解析一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D考点:全等三角形的判定.4387773分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.5.5C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.4387773专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm考点:全等三角形的判定与性质.4387773分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.考点:全等三角形的判定.4387773分析:根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.5.(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.4387773分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cmB.10cmC.12cmD.22cm考点:翻折变换(折叠问题).4387773分析:首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.解答:解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.点评:此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.18考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为3和6两边,没有