20202021学年高二物理专题训练下电场中的力学综合问题pdf含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020-2021学年高二物理:电场中的力学综合问题专题训练1.如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,轨道半径为R,A、B为圆水平直径的两个端点,AC为圆弧.一个质量为m,电荷量为-q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道.不计空气阻力及一切能量损失,关于带电小球的运动情况,下列说法正确的是()A.小球一定能从B点离开轨道B.小球在AC部分可能做匀速圆周运动C.若小球能从B点离开,上升的高度一定等于HD.小球到达C点的速度可能为零【答案】B【解析】若电场力大于重力,则小球有可能不能从B点离开轨道,A错.若电场力等于重力,小球在AC部分做匀速圆周运动,B正确.因电场力做负功,有机械能损失,上升的高度一定小于H,C错误.由圆周运动知识可知若小球到达C点的速度为零,则在此之前就已脱轨了,D错.2.(多选)如图所示,光滑绝缘细管与水平面成30°角,在管的上方P点固定一个点电荷+Q,P点与细管在同一竖直平面内,管的顶端A与P点连线水平.电荷量为-q的小球(小球直径略小于细管内径)从管中A处由静止开始沿管向下运动,在A处时小球的加速度为a.图中PB⊥AC,B是AC的中点,不考虑小球电荷量对电场的影响.则在+Q形成的电场中()A.A点的电势高于B点的电势B.B点的电场强度大小是A点的4倍C.小球从A到C的过程中电势能先减小后增大D.小球运动到C处的加速度为a-g【答案】BCD【解析】点电荷形成的电场中,等势面的分布是以点电荷为球心的同心球面,A、B两点处于不同的球面上,电势不相等,B点离正点电荷近,电势高于A点,故A选项错误;根据电场强度的定义式可知点电荷周围的场强E=k,根据几何关系rB∶rA=1∶2,则==,则B点的电场强度大小是A点的4倍,故B选项正确;根据点电荷形成的电场的场强分布情况可知,φA=φC<φB,负电荷在电势高的地方电势能小,在电势低的地方电势能大,带负电的小球从A到C的过程中电势能先减小后增大,故C选项正确;设电场力沿细管方向提供的加速度为a电,小球在A点时,重力沿细管向下的分力和电场力沿细管向下的分力提供沿细管向下的加速度,a=gsin30°+a电,在C点时,加速度沿细管向上,a′=a电-gsin30°,联立解得a′=a-g,故D选项正确.3.(多选)如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电荷量为+q、质量为m的小球以初速度v0从斜面底端A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则()A.A、B两点间的电势差一定等于B.小球在B点的电势能一定大于在A点的电势能C.若电场是匀强电场,则该电场的电场强度的最小值一定为D.若该电场是斜面中垂线上某点的点电荷Q产生的,则Q一定是正电荷【答案】AC【解析】根据动能定理得:-mgLsinθ+qUAB=mv-mv=0,得到UAB=,故选项A正确;小球从A点运动到B点的过程中,重力势能增加,电势能减少,则小球在B点的电势能一定小于小球在A点的电势能,故选项B错误;电场力与重力、支持力的合力为零时,小球做匀速直线运动,到达B点时小球速度仍为v0,小球的重力沿斜面向下的分力为mgsinθ一定,则当电场力沿斜面向上,大小为F=mgsinθ时,电场力最小,场强最小,又电场力F=Eq,则该电场的场强的最小值一定是,故选项C正确;若该电场是斜面中垂线上某点的点电荷Q产生的,则小球在A、B两点电势相等,电势能相等,重力做负功,小球到达B点的速度小于v0与题意不符,故选项D错误.4.(多选)如图所示,绝缘弹簧的下端固定在光滑斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现将与Q大小相同、电性也相同的小球P,从直线ab上的N点由静止释放,若两小球可视为点电荷.在小球P与弹簧接触到速度变为零的过程中,下列说法中正确的是()A.小球P的速度一定先增大后减小B.小球P的机械能一定在减少C.小球P速度最大时所受弹簧弹力和库仑力的合力为零D.小球P与弹簧系统的机械能一定增加【答案】AD【解析】在小球P与弹簧接触到速度变为零的过程中,弹簧弹力不断增大,而库仑力不断减小,合力先向下,后向上,小球先沿斜面加速向下运动,后减速向下运动,当弹簧压缩量最大时,小球静止,故A正确;本题涉及到动能、重力势能、弹性势能以及电势能的变化,弹性势能和电势能的总和可能减小,那小球的动能和重力势能之和可能增大,也就是小球P的机械能可能增大,故B错误;小球P的速度一定先增大后减小,当P的加速度为零时,速度最大,所以小球P速度最大时所受弹簧弹力、重力沿斜面向下的分力和库仑力的合力为零,故C错误;根据能量守恒定律知,小球P的动能、重力势能、电势能和弹簧弹性势能的总和不变,因为在小球P与弹簧接触到速度变为零的过程中,Q对P的库仑斥力做正功,电势能减小,所以小球P与弹簧系统的机械能一定增加,故D正确.5.(多选)如图所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下,则()A.当小球运动到最高点a时,线的张力一定最小B.当小球运动到最低点b时,小球的速度一定最大C.当小球运动到最高点a时,小球的电势能最小D.小球在运动过程中机械能不守恒【答案】CD【解析】若qE=mg,小球做匀速圆周运动,球在各处对细线的拉力一样大.若qE<mg,球在a处速度最小,对细线的拉力最小.若qE>mg,球在a处速度最大,对细线的拉力最大.故A、B错.a点电势最高,负电荷在电势最高处电势能最低,故C正确.小球在运动过程中除重力外,还有静电力做功,机械能不守恒,D正确.6.如图所示,直角三角形ABC为某斜面体的横截面,已知斜面高为h,上表面光滑,与水平面夹角为∠C=30°,D为底边BC上一点,AD与竖直方向的夹角∠BAD=30°,D点处静置一带电荷量为+Q的点电荷.现使一个带电荷量为-q、质量为m的小球从斜面顶端由静止开始运动,则小球到达C点时的速度为多大?【答案】【解析】点电荷Q周围的等势面为以Q为圆心的同心圆,又由几何关系可知,AD=CD,因此A、C在同一等势面上,即A、C两点电势相等,则小球在A、C两点的电势能相等;由能量守恒定律可知,从A到C过程中,由动能定理得:mgh=mv2,解得:v=.7.如图所示,一质量为m、带有电荷量-q的小物体,可以在水平轨道Ox上运动,O端有一与轨道垂直的固定墙.轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,小物体以速度v0从x0点沿Ox轨道运动,运动时受到大小不变的摩擦力Ff作用,且FfqE.设小物体与墙碰撞时不损失机械能,且电荷量保持不变,求它在停止运动前所通过的总路程.【答案】【解析】电场力做功与路径无关,滑动摩擦力始终做负功,由于Ff<qE,小物体最终停留在O端.由动能定理得:qEx0-Ffs=0-mv,解得s=.8.把一个带正电荷q的小球用细线悬挂在两块面积很大的竖直平行板间的O点,小球质量m=2g,悬线长L=6cm,两板间距离d=8cm,当两板间加上U=2×103V的电压时,小球自悬线水平的A点由静止开始向下运动到达O点正下方的B点时的速度刚好为零,如图所示,以后小球一直在A、B之间来回摆动.取g=10m/s2,求小球所带的电荷量.【答案】8×10-7C【解析】取小球为研究对象,重力mg竖直向下,电场力Eq水平向左,绳的拉力为FT,在小球由A向B运动的过程中,重力mg对小球做正功,电场力Eq对小球做负功,拉力FT不做功,根据动能定理mgL-qEL=0,又因为E=,由以上两式可得:q=8×10-7C.9.如图所示,Q为固定的正点电荷,A、B两点在Q的正上方和Q相距分别为h和0.25h,将另一点电荷从A点由静止释放,运动到B点时速度正好变为零,若此电荷在A点处的加速度大小为g,求:(1)此电荷在B点处的加速度;(2)A、B两点间的电势差(用Q和h表示).【答案】(1)3g,方向竖直向上(2)-【解析】(1)由题意可知,这一电荷必为正电荷,设其电荷量为q,由牛顿第二定律得,在A点时:mg-k=m·g.在B点时:k-mg=m·aB,解得aB=3g,方向竖直向上.(2)从A到B的过程,由动能定理得mg(h-0.25h)+qUAB=0,解得UAB=-.10.如图所示,A、B两平行金属板间的匀强电场的场强E=2×105V/m,方向如图所示.电场中a、b两点相距10cm,ab连线与电场线成60°角,a点距A板2cm,b点距B板3cm,求:(1)电势差UAa、Uab和UAB;(2)用外力F把电荷量为1×10-7C的正电荷由b点匀速移动到a点,那么外力F做的功是多少?【答案】(1)4×103V1×104V2×104V(2)1×10-3J【解析】(1)UAa=E·dAa=2×105×0.02V=4×103V.Uab=E·dab=2×105×0.1×cos60°V=1×104V.UAB=E·dAB=2×105×(0.02+0.1×cos60°+0.03)V=2×104V.(2)据动能定理得WF+W电=0,所以WF=-W电=-qUba=qUab=1×10-7×1×104J=1×10-3J.11.如图所示的电场,等势面是一簇互相平行的竖直平面,间隔均为d,各平面电势已在图中标出,现有一质量为m的带电小球以速度v0、方向与水平方向成45°角斜向上射入电场,要使小球做直线运动,求:(1)小球应带何种电荷及其电荷量;(2)小球受到的合外力;(3)在入射方向上小球运动的最大位移xm.(电场足够大)【答案】(1)正电荷(2)mg(3)【解析】(1)作电场线如图(a)所示.由题意知,只有小球受到向左的静电力,静电力和重力的合力与初速度才可能在一条直线上,如图(b)所示.只有当F合与v0在一条直线上才可能使小球做直线运动,所以小球带正电,小球沿v0方向做匀减速运动.由图(b)知qE=mg,相邻等势面间的电势差为U,所以E=,所以q==.(2)由图(b)知,F合==mg(3)由动能定理得-F合xm=0-mv所以xm==.12.如图所示,虚线为电场中的一簇等势面,A、B两等势面间的电势差为10V,且A点的电势高于B点的电势,相邻两等势面电势差相等,一个电子在仅受电场力作用下从电场中M点运动到N点的轨迹如图中实线所示,电子经过M点的动能为8eV,则:(1)电子经过N点时的动能为多大?(2)电子从M运动到N点,电势能变化了多少?【答案】(1)0.5eV(2)增加了7.5eV【解析】(1)UMN=7.5V,对电子由M→N用动能定理得qUMN=EkN-EkM,即-7.5eV=EkN-8eV,EkN=0.5eV.(2)电场力做功-7.5eV,电势能增加量为7.5eV.13.如图所示,带电荷量为Q的正点电荷固定在倾角为30°的光滑绝缘斜面底部的C点,斜面上有A、B两点,且A、B和C在同一直线上,A和C相距为L,B为AC中点.现将一带电小球从A点由静止释放,当带电小球运动到B点时速度恰好为零.已知带电小球在A点处的加速度大小为,静电力常量为k,求:(1)小球运动到B点时的加速度大小;(2)B和A两点间的电势差(用Q和L表示).【答案】(1)(2)【解析】(1)由牛顿第二定律知带电小球在A点时mgsin30°-k=maA带电小球在B点时-mgsin30°=maB且aA=解得aB=(2)带电小球初、末速度均为零,由A点到B点应用动能定理得mgsin30°+qUAB=0由mgsin30°-k=maA=mg联立解得UAB=-,又因为UAB=-UBA所以B、A两点间的电势差UBA=14.如图所示,倾角为θ的斜面处于竖直向下的匀强电场中,在斜面上某点以初速度v0水平抛出一个质量为m的带正电小球,小球受到的电场力与重力相等,地球表面重力加速度为g,设斜面足够长,求:(1)小球经多长时间落到斜面上;(2)从水平抛出至落到斜面的过程中,小球的电势能减少了多少?【答案】(1)(2)mvtan2θ【解析】(1)小球在运动过程中Eq+mg=maEq=mg,得a=2gy=at2x=v0

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功