1同角三角函数基本关系式及诱导公式1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sinαcosα=tanαα≠π2+kπ,k∈Z.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sinα-sinα-sinαsinαcosαcosα余弦cosα-cosαcosα-cosαsinα-sinα正切tanαtanα-tanα-tanα口诀函数名改变,符号看象限函数名不变,符号看象限概念方法微思考1.使用平方关系求三角函数值时,怎样确定三角函数值的符号?提示根据角所在象限确定三角函数值的符号.2.诱导公式记忆口诀“奇变偶不变,符号看象限”中的奇、偶是何意义?提示所有诱导公式均可看作k·π2±α(k∈Z)和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数.1.(2018•全国)已知为第二象限的角,且3tan4,则sincos()A.75B.34C.15D.15【答案】C【解析】sin3tancos4,①,22sincos1,②,又为第二象限的角,sin0,cos0,联立①②,解得3sin5,4cos5,2则1sincos5.故选C.2.(2019•新课标Ⅰ)tan255()A.23B.23C.23D.23【答案】D【解析】tan255tan(18075)tan75tan(4530)231tan45tan3033(33)12633231tan45tan3066333113.故选D.3.(2015•全国)sin225()A.22B.22C.12D.12【答案】A【解析】2sin225sin(18045)sin452.故选A.4.(2015•福建)若5sin13,则为第四象限角,则tan的值等于()A.125B.125C.512D.512【答案】D【解析】5sin13,则为第四象限角,212cos1sin13,sin5tancos12.故选D.5.(2017•上海)若1cos3,则sin()2__________.【答案】13【解析】1cos3,1sin()cos23.故答案为:13.36.(2016•四川)sin750__________.【答案】12【解析】1sin750sin(236030)sin302,故答案为:12.1.(2020•东湖区校级三模)23tancos()323的值为()A.332B.32C.132D.132【答案】A【解析】23tancos()32333()2332.故选A.2.(2020•茂名二模)已知3cos()5,则3sin()2的值为()A.45B.45C.35D.35【答案】D【解析】因为3cos()cos5,所以33sin()cos25.故选D.3.(2020•衡水模拟)已知4cos()5,则3sin()2的值为()A.35B.35C.45D.45【答案】C【解析】因为4cos()cos5,所以34sin()cos25.故选C.44.(2020•北京模拟)若角的终边在第一象限,则下列三角函数值中不是sin的是()A.cos()2B.cos()2C.cos()2D.cos()2【答案】D【解析】对于A,由于cos()cos()sin22,是对于B,由于cos()sin2,是对于C,cos()sin2,是对于D,cos()sin2,不是故选D.5.(2020•梅州一模)31sin(12)A.1(62)4B.1(62)4C.1(26)4D.1(62)4【答案】B【解析】31721326sinsin(2)sin()sincoscossin()12124343432224.故选B.6.(2020•运城模拟)2317cossin(1212)A.0B.22C.262D.262【答案】D【解析】2317cossin12123cos(2)sin()12212coscos12122cos122cos()342coscos2sinsin343412322222225262.故选D.7.(2020•新疆模拟)已知是第二象限角,且31cos()24,则cos()A.154B.14C.14D.154【答案】A【解析】31cos()sin24,又是第二象限角,215cos14sin.故选A.8.(2020•辽宁模拟)已知函数2()2(0xfxaa且1)a过定点P,且角的始边与x轴的正半轴重合,终边过点P,则119cos()sin()sin222(cos()sin()2)A.23B.23C.32D.32【答案】B【解析】函数2()2(0xfxaa且1)a过定点(2,3)P,则3tan2.则1193cos()sin()sin2cos()sin()sin22222sinsincos()sin()222sincos2sincossincoscos12sinsinsintan3,故选B.9.(2020•云南模拟)已知tan()2,则sin4(sin(2)2)A.85B.85C.85D.65【答案】C【解析】tan()tan2,tan2,62222sin42sin2cos24sincos4tan4(2)84sincoscos211(2)5sin(2)2sincostan.故选C.10.(2020•泉州一模)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,若点(2,1)P在角的终边上,则sin(2)(2)A.45B.45C.35D.35【答案】D【解析】由已知利用三角函数定义可得22225cos52(1),故23sin(2)cos22cos125.故选D.11.(2020•吴兴区校级模拟)若1cos()2,则()A.3sin()2B.3sin()22C.1cos()2D.1cos()2【答案】D【解析】由1cos()cos2,可得:1cos2,可得23sin12cos,对于A,3sin()sin2或32,故错误;对于B,1sin()cos22,故错误;对于C,1cos()cos2,故错误;对于D,1cos()cos2,故正确.故选D.12.(2020•咸阳二模)tan(345)()A.23B.23C.23D.23【答案】D【解析】22tan153tan30tan(215)1153tan,7可得23tan156tan1530,解得tan1523,负值舍去,tan(345)tan(36015)tan1523.故选D.13.(2020•吉林二模)tan645()A.23B.23C.23D.23【答案】B【解析】1tan3013tan645tan(236075)tan75tan(4530)231tan3013.故选B.14.(2020•福州一模)若tan()3cos()2,则cos2()A.1B.79C.0或79D.1或79【答案】D【解析】由tan()3cos()2,得sin()23coscos()2,所以cos3cossin,所以cos0或1sin3,故2cos22cos11,或27cos212sin9.故选D.15.(2020•大观区校级模拟)若3sin()122,则2sin(2)(3)A.12B.12C.32D.32【答案】A【解析】因为3sin()122,8所以231cos(2)12()622,所以21sin(2)sin[(2)]cos(2)cos(2)362662.故选A.16.(2020•全国Ⅰ卷模拟)已知31sin()23,则cos()A.13B.13C.223D.223【答案】B【解析】3331sin()sincoscossincos2223,故1cos3.故选B.17.(2020•四川模拟)在平面直角坐标系中,若角的终边经过点44(sin,cos)33P,则cos()()A.32B.12C.12D.32【答案】A【解析】由题意可得,31(,)22P,故3cos2,则3cos()cos2.故选A.18.(2020•邵阳三模)已知3cos()65,则2sin()(3)A.35B.45C.35D.45【答案】C【解析】3cos()65,3sin[()]sin()cos()26365,则223sin()sin()sin()3335,故选C.19.(2020•汉阳区校级模拟)已知(,)22且sincosa,其中(1,0)a,则tan的可能9取值是()A.3B.3C.13D.13【答案】A【解析】由sincosa,两边平方可得22sincos1a,由(1,0)a及(2,)2,有sincos0,且cos0,所以sin0;又sincos0a,所以0cossin,所以tan1.故选A.20.(2020•开封三模)已知A是ABC的一个内角,且sincosAAa,其中(0,1)a,则关于tanA的值,以下答案中,可能正确的是()A.2B.12C.12D.2【答案】A【解析】由0A,得到cos0,所以把sincosAAa,两边平方得:22(sincos)AAa,即222sincos2sincos12sincosAAAAAAa,又(0,1)a,所以22sincos10AAa,所以cos0A,又sincos0AAa,所以sincos0AA,则解得tan1A.比较四个选项,只有A正确.故选A.21.(2020•武汉模拟)已知sin3cos,则2sinsincos1()A.434B.734C.1D.3【答案】B10【解析】sin3cos,tan3,22222222sincos2tan1233173sinsincos11314sincostansincostan.故选B.22.(2020•5月份模拟)若sincos1(0),则3sincos()A.0B.1C.1D.3【答案】D【解析】sincos1,2(sincos)12sincos1