在电子元器件中,继电器一般被认为是一种最不可靠的电子元件,在整机可靠性设计中,把继电器、电位器、可调电感器及可变电容器列为建议不用或少用的元件。但是,由于继电器在控制电路中有独特的电气、物理特性,其断态的高绝缘电阻和通态的低导通电阻,使得其它任何电子元器件无法与其相比,加上继电器标准化程度高、通用性好、可简化电路等优点,所以继电器广泛应用在航天、航空、军用电子装备、信息产业及国民经济的各种电子设备中。随着科技的飞速发展,继电器在程控通信设备中的使用量还在进一步增加,所以,如何保证继电器的可靠性,满足整机系统的可靠性,成为人们关洋的焦点。电子元器件的可靠性应由两部分组成,一是元器件的固有可靠性;二是元器件的使用可靠性。固有可靠性是元器件可靠性的基础,主要靠元器件制造商从设计、制造等方面进行有效的控制,以保证制造出来的元器件达到要求的可靠性等级。使用可靠性则是从使用入手,如何保证和提高元器件的可靠性,使其能满足整机系统的可靠性要求。没有高可靠质量等级的元器件,不可能制造出高可靠的电子设备,所以元器件的固有可靠性是整机可靠性的基础。但是,有了高可靠质量等级的元器件也并不一定能制造出高可靠的整机,这里面就有一个使用可靠性的问题。所谓使用可靠性,就是根据各种元器件的特点利用可靠性设计技术,即元器件的合理选用、降额设计、容差与漂移设计、抗振设计、热设计、三防设计、抗幅射设计、电磁兼容设计、人机工程设计及维修设计等,最大限度的发挥元器件固有可靠性的作用,以达到整机系统的可靠性要求。根据有关部门对整机失效原因的分析统计,其中有百分之四十以上的故障是由于元器件选用不合理造成的。随着元器件制造技术的不断提高,在元器件的固有可靠性已经有了较大提高的情况下,使用可靠性就显得特别重要,而且,随着整机系统功能愈来愈全,所用元器件愈来愈多,对可靠性要求也愈来愈高,所以使用可靠性也愈来愈受到科技界的重视,并且发展成一门新的学科——人为工程。由于继电器是一种机电一体化的元件,是由电磁及机械传动部份组成的,与其它电子元件相比,要复杂得多,加之在制造过程中有些装配调整是手工操作,所以产品的一致性和可靠性要差一些。但是,如果在使用中采取一些防范措施,仍能达到较满意的效果。在对失效继电器进行失效分析中发现,由于使用原因造成的失效约占百分之三十以上。由以上分析可知,继电器可靠性不高,除自身质量原因外,使用不当也是一个主要原因。现在,我们重点研究如何在使用中提高继电器可靠性的措施。继电器的种类较多,这里重点研究目前使用较多的电磁继电器的使用可靠性。2合理选择继电器在整机的可靠性设计中,要求合理选用元器件。元器件的选择和控制是需要多学科知识才能完成的一项任务,一般应由元器件工程师、可靠性设计师、总体及电路设计师、失效分析人员共同完成。首先要根据整机系统的重要程度、可靠性要求、所使用的环境条件及成本等项要求综合考虑和选择。选择时必须重视以下几个方面的要求。2.1对使用环境条件的选择环境条件主要指温度、湿度、低气压、振动、冲击等。环境条件的好坏对继电器可靠性的影响极大。2.1.1温度对继电器的影响继电器是怕热元件,在美军标MIL—HDBK—217《电子设备可靠性预计手册》中的14种主要电子元器件的失效数据中,有8种元器件的失效率取决于环境温度,其中就包括继电器。高温可加速继电器内部塑料及绝缘材料的老化、触点氧化腐蚀、熄弧困难、电参数变坏,使可靠性降低,所以,要求设计时使继电器不要靠近发热元件,并有良好的通风散热条件。继电器虽然是怕热元件,但对过低温度(如军用航空条件-55℃)也不能忽视,低温可使触点冷粘作用加剧,触点表面起露,衔铁表面产生冰膜,使触点不能正常转换,尤其是小功率继电器更为严重。试验证明,对于有些按部标生产的国产小功率继电器,虽然使用条件规定低温为-55℃,但实际上在此条件下继电器根本无法进行正常转换,建议在选择时要留有充分的余量,对于重要的军用电子整机,建议选用国军标产品。2.1.2低气压对继电器的影响在低气压条件下,继电器散热条件变坏,线圈温度升高,使继电器给定的吸合、释放参数发生变化,影响继电器的正常工作;低气压还可使继电器绝缘电阻降低、触点熄弧困难,容易使触点烧熔,影响继电器的可靠性。对于使用环境较恶劣的条件,建议采用整机密封的办法。2.1.3机械应力对继电器的影响电磁继电器的簧片均为悬梁结构,固有频率低,振动和冲击可引起谐振,导致继电器触点压力下降,容易产生瞬间断开或触点出现抖动,严重时可造成结构损坏,可动的衔铁部分可产生误动作,影响继电器的可靠性。建议设计师尽量采取防振措施以防产生谐振。根据上述环境条件对继电器的影响,在选择继电器时,首先要使继电器满足整机规定的各项环境条件的要求。但是,有些设计师由于不能全面考虑各项环境条件,使研制出来的整机达不到合同规定的要求。如在军用机载电子设备上选用JRC—5M小型电磁继电器,设计师只重视环境温度可满足整机要求而忽视振动、击冲条件(军用机载条件为196M/S2、20g、10Hz~2000Hz,而JRC-5M为49M/S2、5g、10Hz~500Hz)。如果有些条不能满足,设计师要采取防范措施,否则可靠性得不到保证。2.2合理选用继电器质量等级所谓“质量等级”,是指元器件在装机之前,按产品执行的标准或供需双方的技术协议,在制造、检验及筛选过程中的质量控制等级。其质量系数πQ是指不同质量等级对元器件工作失效率λP影响的调整系数。元器件的失效率可用下式表示:λP=λb(πE·πQ·K)式中:λP表示工作失效率;λb表示基本失效率;πE表示环境系数;πQ表示质量系数;K:表示其它因素造成的综合系数,如应用系数、种类系数等。不同质量等级的元器件,其质量系数πQ不同。从上式可以看出质量系数对元器件失效率的影响程度,所以要求在选择元器件时,要根据整机系统的可靠性要求,选择元器件的质量等级。继电器的质量等级按GJB/Z299B《电子设备可靠性予计手册》规定划分为5个质量等级,如表1所示。表1质量等级与质量系数πQ质量等级质量要求说明补充说明πQAA1符合GJB65A—91《有可靠性指标的电磁继电器总规范》,列入质量认证合格产品目录的W级产品。0.15A2符合GJB65A—91的Y级产品;符合GJB1042—90《电磁继电器总规范》的产品;符合GJB1434—92《真空继电器总规范》的产品;符合GJB1436—92《干簧继电器总规范》的产品;按质量认证标准,经中国电子元器件质量认证委员会认证的合格产品。符合QZJ840617密封继电器“七专”技术条件的产品;符合QZJ840618密封温度继电器“七专”技术条件的产品0.3BB1按军用标准筛选要求进行筛选的B2质量等级的产品。符合“七九0五”密封继电器“七专”质量控制技术协议的产品0.6B2符合SJ2386—83《干簧继电器总技术条件》的产品;符合SJ2456—84《电子时间继电器总技术条件》的产品。1C低档产品53继电器在使用中的正确连接继电器在使用中能否做到正确连接对继电器可靠性及使用寿命影响极大,所以要求设计师在使用时要根据继电器的特点正确连接。3.1关于继电器触点的并联使用3.1.1不能用触点并联的方式提高功率有时,用一组触点不能满足电路的功率要求时,有的设计师采用两组或多组触点并联的方式来保证电路的功率要求。但是,由于继电器触点在动作时存在微小的时间差(一般两组触点动作时间相差0.1毫秒~0.2毫秒)。由此可知,先接通的一组触点将承受全部功率,处在超应力条件下进行切换,很容易被大电流形成的电弧烧毁而失效,所以,要求在使用继电器时,不能用触点并联的方式提高功率。3.1.2一般不采用触点并联的方式提高可靠性在可靠性设计中,冗余设计可以提高可靠性。有些设计师利用冗余设计的原理,主观上想利用继电器触点并联的方式提高控制电路的可靠性。但是,一般控制电路的作用是利用触点相互转换作用达到对电路的控制。如果采用触点并联的方式,接通的可靠性虽然提高了,但断开的可靠性却降低了,所以对一般用继电器控制的转换电路,采用并联方式提高可靠性是不可取的。只有对特殊要求,例如一次接通或断开就能完成规定功能的电路(如发射卫星,只要求继电器触点把火箭的点火系统接通就完成任务),采用触点并联的方式可提高可靠性。3.2继电器触点的正确连接3.2.1应尽量多用动合触点、少用动断触点在对继电器触点连接时,应尽量多采用动合触点的连接方式,少用动断触点,其原因是动合触点比动断触点在动作时的触点回跳次数少。众所周知,触点抖动对电路产生不良影响,而且缩短了触点的寿命。3.2.2对转换触点极性的正确连接转换触点极性的连接对触点寿命的影响极大,正确的连接应是可动触点接电源阴极,固定触点接电源阳极。其原因是通过对两种不同连接的测试表明,在相同负载条件下,按上述正确的极性连接与相反的极性连接,其触点的燃弧时间要减短二分之一,因而提高了触点寿命。3.2.3对继电器线圈电压的正确连接继电器的技术条件一般对线圈的电压都给出工作电压、吸合电压、释放电压。要保证继电器的正常工作,在电路连接时,一定要保证在任何情况下都要使给定的三个电压满足技术条件规定的数值。否则,继电器无法正常转换。下面介绍一个连接不正确的实例。设计者想用3支工作电压为6V的JRC—5M小型电磁继电器和两支开关组成的控制电路。要求K1闭合时,J1继电器工作;K2闭合时J3继电器工作;当K1、K2同时闭合时,J1、J2、J3继电器同时工作;当K1、K2同时打开时,J1、J2、J3继电器同时不工作。我们从图中可以看出,继电器的工作条件都可满足,线圈所加的电压为6V,大于该继电器的吸合电压,符合工作电压条件。但是,当K1、K2在此情况下打开时,继电器J1、J2、J3不能恢复到不工作状态。不正确的继电器连接是因为此时J1、J2、J3继圈与6V电流形成串联回路,此时,每个线圈的电压为6V电源电压的1/3(2V),而该继电器的释放电压≤0.5V,所以3只继电器仍处在工作状态,达不到设计者的要求。4继电器触点负荷的正确使用根据现场使用统计,在继电器使用中,由于对触点负荷使用不当造成的失效,约占继电器总失效率的70%。如何正确设计触点负荷应力是保证继电器可靠性的关键。一般在可靠性设计中,降额设计是提高可靠性最有效的措施,对其它元器件来讲,如果不考虑其它因素如成本、体积等,降额越多,可靠性越高。但是,继电器与其它元器件有不同之处,并不是触点所加的负荷应力越小越可靠,这主要是由触点失效机理决定的。当触点电流使用到100毫安时,触点的电弧作用明显减弱,触点在高温条件下析出的含碳物质不能被电弧烧掉而沉积在触点表面,使触点接触电阻增大,影响接触可靠性。当触点负荷使用在10毫安以下或50毫伏以下时,接触可靠性明显降低,因为这时电压无法击穿触点表面的膜电阻,将出现低电平失效。尤其在高温条件下,加速了触点的氧化,低电平失效表现得更为严重,所以把10毫安以下,50毫伏以下的负载称为低电平负载。如果要求继电器工作在低电平条件下,需要与生产厂签订专门技术协议,生产厂要按低电平要求进行生产和筛选,否则将出现低电平失效,严重影响可靠性。继电器的负荷应力虽然不能过小,但是,技术条件给出的负荷应力,是触点的最大额定值,是在任何情况下都不应该超过的参数。如果在使用中超过,轻者可造成寿命缩短,可靠性降低,重者可烧毁触点,造成失效。这主要是继电器触点在大负荷下工作时所产生的飞弧导致触点被烧熔,在触点表面形成凹凸不平,形成机械咬合而无法分开,触点负荷越大,飞弧越大,触点被烧毁的可能性越大。从以上分析可知,适当的降额仍是提高继电器可靠性的有效措施。触点负荷的正确使用,在一般情况下,负荷应力应设计在100毫安以上、技术指标给定的额定负荷值的百分之八十以下比较可靠。值得注意的是,继电器触点的额定负荷值是在阻性负载条件下给定的,当使用的负载是感性、容性及灯载时,可产生10倍的浪涌电流,所以如果不是阻性负载,使用时一般应按表2所示进行换算。表2负载换算阻性负载电流感性负载电流电机负载电流灯泡负载电流100%30%20%15