电动力学答案第一章电磁现象的普遍规律1.根据算符的微分性与向量性,推导下列公式:BABAABABBA)()()()()(AAAA)()(221A解:(1))()()(ccABBABABABAABAB)()()()(ccccBABAABAB)()()()((2)在(1)中令BA得:AAAAAA)(2)(2)(,所以AAAAAA)()()(21即AAAA)()(221A2.设u是空间坐标zyx,,的函数,证明:uufufdd)(,uuudd)(AA,uuudd)(AA证明:(1)zyxzufyufxufufeee)()()()(zyxzuufyuufxuufeeedddddduufzuyuxuufzyxdd)(ddeee(2)zuAyuAxuAuzyx)()()()(AzuuAyuuAxuuAzyxdddddduuzuyuxuuAuAuAzyxzzyyxxdd)()dddddd(Aeeeeee(3)uAuAuAzuyuxuuuzyxzyxd/dd/dd/d///ddeeeAzxyyzxxyzyuuAxuuAxuuAzuuAzuuAyuuAeee)dddd()dddd()dddd(zxyyzxxyzyuAxuAxuAzuAzuAyuAeee])()([])()([])()([)(uA3.设222)'()'()'(zzyyxxr为源点'x到场点x的距离,r的方向规定为从源点指向场点。(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:rrr/'r;3/)/1(')/1(rrrr;0)/(3rr;0)/(')/(33rrrr,)0(r。(2)求r,r,ra)(,)(ra,)]sin([0rkE及)]sin([0rkE,其中a、k及0E均为常向量。(1)证明:222)'()'()'(zzyyxxr○1rzzyyx'xrrzyx/])'()'()()[/1(reeerzzyyx'xrrzyx/])'()'()()[/1('reee可见rr'○23211dd1rrrrrrrr32'1'1dd1'rrrrrrrr可见rr/1'/1○3rrrr)/1()/1(])/1[()/(3333rrrr0301dd43rrrrrrrr○4rrrr33331)/1(])/1[()/(rrrr03334rrrrr,)0(r(2)解:○13])'()'()'[()(zyxzyxzzyyxxzyxeeeeeer○20'''///zzyyxxzyxzyxeeer○3])'()'()')[(()(zyxzyxzzyyxxzayaxaeeeraaeeezzyyxxaaa○4raraararra)()()()()(因为,a为常向量,所以,0a,0)(ar,又0r,arara)()(○5)]sin([)sin()()]sin([000rkErkErkE0E为常向量,00E,而krkrkrkrk)cos()()cos()sin(,所以)cos()]sin([00rkEkrkE○6)]cos()]sin([)]sin([000rkEkErkrkE4.应用高斯定理证明fSfSVVdd,应用斯托克斯(Stokes)定理证明LSlSdd证明:(I)设c为任意非零常矢量,则VVVV)]([ddfcfc根据矢量分析公式)()()(BABABA,令其中fA,cB,便得cfcfcfcf)()()()(所以VVVVVV)(d)]([ddcffcfcScfd)(fScfScd)d(因为c是任意非零常向量,所以fSfddVV(II)设a为任意非零常向量,令aF,代入斯托克斯公式,得lFSFSdd(1)(1)式左边为:SSSaaSad][d)(SSSaSaddSSSaSaddSSad(2)(1)式右边为:laladd(3)所以laSaddS(4)因为a为任意非零常向量,所以lSddS5.已知一个电荷系统的偶极矩定义为'd'),'()(VttVxxp,利用电荷守恒定律0tJ证明p的变化率为:VVttd),'(ddxJp证明:方法(I)VVVttVttt'd]),(['d),(ddddx'x'x'x'pVVVVtt'd)'('d),(x'Jx'x'VVV'xVt'd)'('d)'(dd1111Je'xJep'd])'()('[11V'x'xVJJVxSVJ'x'd'd1SJ1因为封闭曲面S为电荷系统的边界,所以电流不能流出这边界,故0'd1S'xSJ,VxVJt'ddd11ep同理VxVJt'ddd22ep,VxVJt'ddd33ep所以VVt'dddJp方法(II)VVVttVttt'd]),(['d),(ddddx'x'x'x'pVVVVtt'd)'('d),(x'Jx'x'根据并矢的散度公式gfgffg)()()(得:JxJxJxJJx')(')(')()'(VVVVt'd'd)('ddJJx'pVV'd)'(dJJxSVV'dJ6.若m是常向量,证明除0R点以外,向量3/R)(RmA的旋度等于标量3/RRm的梯度的负值,即A,其中R为坐标原点到场点的距离,方向由原点指向场点。证明:3/)/1rrr(])1[()]1([)(3mmrmArrrmmmm])1[()]1([1)(1)(rrrrmm]1[1)(2rr其中0)/1(2r,(0r)r1)(mA,(0r)又)]1([)(3rrmrmmmmm])1[()1)(()()1()]1([rrrr)1)((rm所以,当0r时,A7.有一内外半径分别为1r和2r的空心介质球,介质的电容率为,使介质球内均匀带静止自由电荷f,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。解:(1)设场点到球心距离为r。以球心为中心,以r为半径作一球面作为高斯面。由对称性可知,电场沿径向分布,且相同r处场强大小相同。当1rr时,01D,01E。当21rrr时,frrDr)(34431322231323)(rrrDf,231323)(rrrEf,向量式为rE331323)(rrrf当2rr时,frrDr)(3443132322313233)(rrrDf20313233)(rrrEf向量式为rE30313233)(rrrf(2)当21rrr时,)()(202202DDEDPpf)1()1(020D当1rr时,0)1()()(12020212rrpDDDnPPn当2rr时,frrprrr22313202023)1()1(2DPn8.内外半径分别为1r和2r的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流fJ,导体的磁导率为,求磁感应强度和磁化电流。解:(1)以圆柱轴线上任一点为圆心,在垂直于轴线平面内作一圆形闭合回路,设其半径为r。由对称性可知,磁场在垂直于轴线的平面内,且与圆周相切。当1rr时,由安培环路定理得:0,011BH当21rrr时,由环路定理得:)(22122rrJrHf所以rrrJHf2)(2122,fJrrrB2)(2122向量式为rJeBffrrrJrrr221221222)(ˆ2)(当2rr时,)(221223rrJrHf所以rrrJHf2)(21223,fJrrrB2)(212203向量式为rJeBffrrrJrrr2212202122032)(ˆ2)((2)当21rrr时,磁化强度为rJHMfrrr22120202)()1()1(所以fMJHHMJ)1()1(])1[(02020在1rr处,磁化面电流密度为0d211lMrM在2rr处,磁化面电流密度为fMJrrrr222122022)()1(d210lM向量式为fMrrrJα22212202)()1(9.证明均匀介质内部的体极化电荷密度p总是等于体自由电荷密度f的)/1(0倍。证明:在均匀介质中EEP)()1/(000所以DEP)/1)(()(00pff)/1(]/)[(0010.证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明:线圈1在线圈2的磁场中受的力:21112BlFdId,而23121222024lrdIrlB,12123121221210312122211012)(4)(4llllrddIIrdIdIrllrllF)(41221312123121212210llddrrddIIllrrll(1)同理可得线圈2在线圈1的磁场中受的力:)(4211232121321212121021llddrrddIIllrrllF(2)(1)式中:0)1(122121212221212231212123121212=一周lllllllrdrdrdrddrddllrllrll同理(2)式中:2103212121llrddrll)(41221312122102112llddrIIllrFF11.平行板电容器内有两层介质,它们的厚度分别为1l和2l,电容率为1和2,今在两板接上电动势为E的电池,求:(1)电容器两极板上的自由电荷面密度1f和2f;(2)介质分界面上的自由电荷面密度3f。(若介质是漏电的,电导率分别为1和2当电流达到恒定时,上述两物体的结果如何?)解: