3.2立体几何中的向量方法第1课时空间向量与平行关系学习目标核心素养1.掌握直线的方向向量,平面的法向量的概念及求法.(重点)2.熟练掌握用方向向量,法向量证明线线、线面、面面间的平行关系.(重点、难点)1.通过平面法向量的学习,培养学生数学运算的核心素养.2.借助利用空间向量解决平行问题的学习,提升学生的数学运算及逻辑推理的核心素养.1.直线的方向向量与平面的法向量(1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个.(2)平面的法向量的定义直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.思考:直线的方向向量(平面的法向量)是否唯一?[提示]不唯一,直线的方向向量(平面的法向量)有无数个,它们分别是共线向量.2.空间中平行关系的向量表示线线平行设两条不重合的直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇒a∥b⇔(a1,b1,c1)=k(a2,b2,c2)线面平行设l的方向向量为a=(a1,b1,c1),α的法向量为u=(a2,b2,c2),则l∥α⇔a·u=0⇔a1a2+b1b2+c1c2=0面面平行设α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔(a1,b1,c1)=k(a2,b2,c2)1.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3)B.(1,3,2)C.(2,1,3)D.(3,2,1)A[AB→=(2,4,6)=2(1,2,3).]2.若平面α,β的一个法向量分别为m=-16,13,-1,n=12,-1,3,则()A.α∥βB.α⊥βC.α与β相交但不垂直D.α∥β或α与β重合D[∵n=-3m,∴m∥n,∴α∥β或α与β重合.]3.已知u,v分别是平面α,β的法向量,则下列条件能使α与β垂直的是()A.u=(-2,2,5),v=(6,-4,4)B.u=(1,2,-2),v=(-2,-4,4)C.u=(2,-3,5),v=(-3,1,-4)D.u=(-2,1,4),v=(6,3,3)A[对于A,因为u·v=0,∴u⊥v,∴α⊥β.对于B,u∥v,∴α∥β或α与β重合.对于C,u与v不垂直,也不平行,∴α与β相交.对于D,u与v不垂直,也不平行,∴α与β相交,故选A.]4.若直线l的方向向量a=(2,2,-1),平面α的法向量μ=(-6,8,4),则直线l与平面α的位置关系是________.l⊂α或l∥α[∵μ·a=-12+16-4=0,∴μ⊥a,∴l⊂α或l∥α.]利用方向向量和法向量判定线线、线面、面面的位置关系【例1】根据下列条件,判断相应的线、面位置关系:(1)不重合的直线l1与l2的方向向量分别是a=(2,3,-1),b=(-6,-9,3);(2)直线l1与l2的方向向量分别是a=(-2,1,4),b=(6,3,3);(3)平面α与β的法向量分别是u=(1,-1,2),v=3,2,-12;(4)平面α与β的法向量分别是u=(2,-3,4),v=(4,-2,1);(5)直线l的方向向量、平面α的法向量分别是a=(0,-8,12),u=(0,2,-3).[解](1)∵a=(2,3,-1),b=(-6,-9,3),∴a=-13b,∴a∥b,即l1∥l2.(2)∵a=(-2,1,4),b=(6,3,3),∴a·b≠0且a≠kb(k∈R),∴a,b既不共线也不垂直,即l1与l2相交或异面.(3)∵u=(1,-1,2),v=3,2,-12,∴u·v=3-2-1=0,∴u⊥v,即α⊥β.(4)∵u=(2,-3,4),v=(4,-2,1),∴u·v≠0且u≠kv(k∈R),∴u与v既不共线也不垂直,即α和β相交但不垂直.(5)∵a=(0,-8,12),u=(0,2,-3),∴u=-14a,∴u∥a,即l⊥α.1不重合的两直线的方向向量共线时,两直线平行;否则两直线相交或异面.2直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3两个平面的法向量共线垂直时,两平面平行或重合垂直;否则两平面相交但不垂直.[跟进训练]1.设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k),若α∥β,则k=________.4[∵α∥β,∴(1,3,-2)=λ(-2,-6,k),∴-2λ=1,λk=-2,∴λ=-12,k=4.]求平面的法向量【例2】如图,已知ABCD是直角梯形,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=12,试建立适当的坐标系.(1)求平面ABCD的一个法向量;(2)求平面SAB的一个法向量;(3)求平面SCD的一个法向量.[解]以点A为原点,AD、AB、AS所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D12,0,0,S(0,0,1).(1)∵SA⊥平面ABCD,∴AS→=(0,0,1)是平面ABCD的一个法向量.(2)∵AD⊥AB,AD⊥SA,AB∩SA=A,∴AD⊥平面SAB,∴AD→=12,0,0是平面SAB的一个法向量.(3)在平面SCD中,DC→=12,1,0,SC→=(1,1,-1).设平面SCD的法向量是n=(x,y,z),则n⊥DC→,n⊥SC→,所以n·DC→=0,n·SC→=0,得方程组12x+y=0,x+y-z=0,∴x=-2y,z=-y,令y=-1,得x=2,z=1,∴平面SCD的一个法向量为n=(2,-1,1).1.利用待定系数法求平面法向量的步骤(1)设向量:设平面的法向量为n=(x,y,z).(2)选向量:在平面内选取两个不共线向量AB→,AC→.(3)列方程组:由n·AB→=0,n·AC→=0,列出方程组.(4)解方程组:n·AB→=0,n·AC→=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n的坐标时,可令x,y,z中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[跟进训练]2.正方体ABCDA1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图所示的空间直角坐标系中,求:(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.[解]设正方体ABCDA1B1C1D1的棱长为2,则D(0,0,0),B(2,2,0),A(2,0,0),C(0,2,0),E(1,0,2).(1)连接AC(图略),因为AC⊥平面BDD1B1,所以AC→=(-2,2,0)为平面BDD1B1的一个法向量.(2)DB→=(2,2,0),DE→=(1,0,2).设平面BDEF的一个法向量为n=(x,y,z).∴n·DB→=0,n·DE→=0,∴2x+2y=0,x+2z=0,∴y=-x,z=-12x.令x=2,得y=-2,z=-1.∴n=(2,-2,-1)即为平面BDEF的一个法向量.利用空间向量证明平行关系[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理?[提示]可设几何体的棱长为1或a,再求点的坐标.【例3】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.思路探究:[证明]法一:如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则D(0,0,0),A1(1,0,1),B(1,1,0),M0,1,12,N12,1,1,于是DA1→=(1,0,1),DB→=(1,1,0),MN→=12,0,12.设平面A1BD的法向量为n=(x,y,z),则n⊥DA1→,n⊥DB→,即n·DA1→=x+z=0,n·DB→=x+y=0,取x=1,则y=-1,z=-1,∴平面A1BD的一个法向量为n=(1,-1,-1).又MN→·n=12,0,12·(1,-1,-1)=0,∴MN→⊥n.∴MN∥平面A1BD.法二:MN→=C1N→-C1M→=12C1B1→-12C1C→=12(D1A1→-D1D→)=12DA1→,∴MN→∥DA1→,∴MN∥平面A1BD.法三:MN→=C1N→-C1M→=12C1B1→-12C1C→=12DA→-12A1A→=12()DB→+BA→-12()A1B→+BA→=12DB→-12A1B→.即MN→可用A1B→与DB→线性表示,故MN→与A1B→,DB→是共面向量,故MN∥平面A1BD.1.本例中条件不变,试证明平面A1BD∥平面CB1D1.[证明]由例题解析知,C(0,1,0),D1(0,0,1),B1(1,1,1),则CD1→=(0,-1,1),D1B1→=(1,1,0),设平面CB1D1的法向量为m=(x1,y1,z1),则m⊥CD1→m⊥D1B1→,即m·CD1→=-y1+z1=0,m·D1B1→=x1+y1=0,令y1=1,可得平面CB1D1的一个法向量为m=(-1,1,1),又平面A1BD的一个法向量为n=(1,-1,-1).所以m=-n,所以m∥n,故平面A1BD∥平面CB1D1.2.若本例换为:在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.[证明]∵EF⊥平面AEB,AE⊂平面AEB,BE⊂平面AEB,∴EF⊥AE,EF⊥BE.又∵AE⊥EB,∴EB,EF,EA两两垂直.以点E为坐标原点,EB,EF,EA分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.由已知得,A(0,0,2),B(2,0,0),C(2,4,0),F(0,3,0),D(0,2,2),G(2,2,0),∴ED→=(0,2,2),EG→=(2,2,0),AB→=(2,0,-2).设平面DEG的法向量为n=(x,y,z),则ED→·n=0,EG→·n=0,即2y+2z=0,2x+2y=0,令y=1,得z=-1,x=-1,则n=(-1,1,-1),∴AB→·n=-2+0+2=0,即AB→⊥n.∵AB⊄平面DEG,∴AB∥平面DEG.1.向量法证明线面平行的三个思路(1)设直线l的方向向量是a,平面α的法向量是u,则要证明l∥α,只需证明a⊥u,即a·u=0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v,则α∥β⇔μ∥v.1.利用向量解决立体几何问题的“三部曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)进行向量运算,研究点、直线、平面之间的关系(距离和夹角等);(3)根据运算结果的几何意义来解释相关问题.2.证明线面平行问题,可以利用直线的方向向量和平面的法向量之间的关系;也可以转化为线线平行,利用向量共线来证明.1.若A0,2,198,B1,-1,58,C-2,1,5