2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1.已知集合A={(𝑥||𝑥|2)},B={−2,0,1,2},则AB()A.{0,1}B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:222,xx,因此AB=2,0,1,2(2,2)0,1,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.在复平面内,复数11i的共轭复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:11111(1)(1)22iiiii的共轭复数为1122i对应点为11(,)22,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3.执行如图所示的程序框图,输出的s值为A.12B.56C.76D.712【答案】B【解析】分析:初始化数值1,1ks,执行循环结构,判断条件是否成立,详解:初始化数值1,1ks循环结果执行如下:第一次:1111(1),2,2322skk不成立;第二次:2115(1),3,33236skk成立,循环结束,输出56s,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为A.32fB.322fC.1252fD.1272f【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为122,所以1212(2,)nnaannN,又1af,则127771281(2)2aaqff故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1nnaqa(*0,qnN)或1nnaqa(*0,2,qnnN),数列{}na是等比数列;(2)等比中项公式法,若数列{}na中,0na且212nnnaaa(*3,nnN),则数列{}na是等比数列.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥PABCD,在四棱锥PABCD中,2,2,2,1PDADCDAB,由勾股定理可知:22,22,3,5PAPCPBBC,则在四棱锥中,直角三角形有:,,PADPCDPAB共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6.设,ab均为单位向量,则“33abab”是“ab”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】先对模平方,将33abab等价转化为0ab,再根据向量垂直时数量积为零得充要关系.【详解】2222223333699+6ababababaabbaabb,因为,ab均为单位向量,所以2222699+60aabbaabbabab,即“33abab”是“ab”的的充分必要条件.选C.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p则q”是真命题,“若q则p”是假命题,则p是q的充分不必要条件;若“若p则q”是真命题,“若q则p”是真命题,则p是q的充分必要条件;若“若p则q”是假命题,“若q则p”是真命题,则p是q的必要不充分条件;若“若p则q”是假命题,“若q则p”是假命题,则p是q的既不充分也不必要条件.7.在平面直角坐标系中,记d为点cos,sinPθθ到直线20xmy的距离,当、m变化时,d的最大值为()A.1B.2C.3D.4【答案】C【解析】【分析】P为单位圆上一点,而直线20xmy过点2,0A,则根据几何意义得d的最大值为1OA.【详解】22cossin1Q,P为单位圆上一点,而直线20xmy过点2,0A,所以d的最大值为1213OA,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8.设集合{(,)|1,4,2},Axyxyaxyxay则A.对任意实数a,(2,1)AB.对任意实数a,(2,1)AC.当且仅当a0时,(2,1)AD.当且仅当32a时,(2,1)A【答案】D【解析】分析:求出(2,1)A及(2,1)A所对应的集合,利用集合之间的包含关系进行求解.详解:若(2,1)A,则32a且0a,即若(2,1)A,则32a,此命题的逆否命题为:若32a,则有(2,1)A,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据,pq成立时对应的集合之间的包含关系进行判断.设{|()},{|()}AxpxBxqx,若AB,则pq;若AB,则pq,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。9.设na是等差数列,且13a,2536aa,则na的通项公式为__________.【答案】63nan【解析】【分析】先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可.【详解】设等差数列na的公差为d,13334366adddQ,,,36(1)63.nann【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确:二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.10.在极坐标系中,直线cossin(0)aa与圆2cos相切,则a__________.【答案】12【解析】【分析】根据222,cos,sinxyxy将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.【详解】因为222,cos,sinxyxy,由cossin(0)aa,得(0)xyaa,由2cos,得2=2cos,即22=2xyx,即22(1)1xy,因为直线与圆相切,所以1112012.2aaaa,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cosx及siny直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos,sin,的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.11.设函数cos06fxx,若4fxf对任意的实数x都成立,则的最小值为__________.【答案】23【解析】【分析】根据题意fx取最大值4f,根据余弦函数取最大值条件解得的表达式,进而确定其最小值.【详解】因为4fxf对任意的实数x都成立,所以fx取最大值4f,所以22π()8()463kkZkkZ,,因为0,所以当0k时,取最小值为23.【点睛】函数cos()(0,0)yAxBA的性质(1)maxmin=+yAByAB,.(2)周期2π.T(3)由π()xkkZ求对称轴,最大值对应自变量满足2π()xkkZ,最小值对应自变量满足+2()xkkZ,(4)由22()22kxkkZ求增区间;由322()22kxkkZ求减区间.12.若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.【答案】3【解析】【详解】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,平移直线2zyx,由图可知直线2zyx过点A(1,2)时,z取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.13.能说明“若f(x)f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案】y=sinx(答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)f(0)且(0,2]上是减函数.详解:令0,0()4,(0,2]xfxxx,则f(x)f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sinx,则f(0)=0,f(x)f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M中的一个特殊值0x,使0()px不成立即可.通常举分段函数.14.已知椭圆22221(0)xyMabab:,双曲线22221xyNmn:.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】(1).31(2).2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中22,mn关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为3cc,再根据椭圆定义得32cca,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为3cc,再根据椭圆定义得32cca,所以椭圆M的离心率为231.13ca双曲线N的渐近线方程为nyxm,由题意得双曲线N的一条渐近线的倾斜角为222ππtan333nm,,2222222342.mnmmeemm,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,abc的方程或不等式,再根据,,abc的关系