电力电子技术绪论1.电力电子技术的内容z电力电子学,又称功率电子学(PowerElectronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。z它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。z电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。z实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。变换器共有四种类型:z交流-直流(AC-DC)变换:将交流电转换为直流电。z直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。z交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。z直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。2.电力电子技术的发展z在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。z1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。z70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。z控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。z微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可利用软件编程,既方便又灵活。z各种新颖、复杂的控制策略和方案得到实现,并具有自诊断功能,并具有智能化的功能。将新的控制理论和方法应用在变换器中。z综上所述可以看出,微电子技术、电力电子器件和控制理论则是现代电力电子技术的发展动力。3.电力电子技术的重要作用z(1)优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。z(2)改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。z(3)电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。z(4)电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。4.电力电子技术课程的学习要求z(1)熟悉和掌握常用电力电子器件的工作机理、特性和参数,能正确选择和使用它们。z(2)熟悉和掌握各种基本变换器的工作原理,特别是各种基本电路中的电磁过程,掌握其分析方法、工作波形分析和变换器电路的初步设计计算。z(3)了解各种开关元件的控制电路、缓冲电路和保护电路。z(4)了解各种变换器的特点、性能指标和使用场合。z(5)掌握基本实验方法与训练基本实验技能。第1章电力电子器件主要内容:常用电力电子器件的基本结构、工作原理、外特性、主要参数、开关特性、安全工作区。这些器件的驱动电路和缓冲电路。1.1功率二极管1.1.1功率二极管的结构和工作原理1.功率二极管的结构2.功率二极管的工作原理由于PN结具有单向导电性,所以二极管是一个正方向单向导电、反方向阻断的电力电子器件。1.1.2功率二极管的特性和主要参数1.功率二极管的特性(1)功率二极管的伏安特性二极管具有单向导电能力,二极管正向导电时必须克服一定的门坎电压Uth(又称死区电压),当外加电压小于门坎电压时,正向电流几乎为零。硅二极管的门坎电压约为0.5V,当外加电压大于Uth后,电流会迅速上升。当外加反向电压时,二极管的反向电流IS是很小的,但是当外加反向电压超过二极管反向击穿电压URO后二极管被电击穿,反向电流迅速增加。功率二极管的伏安特性(2)功率二极管的开关特性由于PN结电容的存在,二极管从导通到截止的过渡过程与反向恢复时间trr、最大反向电流值IRM,与二极管PN结结电容的大小、导通时正向电流IFR所对应的存储电荷Q、电路参数以及反向电流di/dt等都有关。普通二极管的trr=2~10µs,快速恢复二极管的trr为几十至几百ns,超快恢复二极管的trr仅几个ns。功率二极管的开关特性2.功率二极管的主要参数(1)反向重复峰值电压URRM取反向不重复峰值电压URSM的80%称为反向重复峰值电压URRM,也被定义为二极管的额定电压URR。显然,URRM小于二极管的反向击穿电压URO。(2)额定电流IFR二极管的额定电流IFR被定义为其额定发热所允许的正弦半波电流平均值。其正向导通流过额定电流时的电压降UFR一般为1~2V。当二极管在规定的环境温度为+40℃和散热条件下工作时,通过正弦半波电流平均值IFR时,其管芯PN结温升不超过允许值。若正弦电流的最大值为Im,则额定电流为(1-1)mIttdII×=∫=πωωππ1)(sin210mFR(3)最大允许的全周期均方根正向电流IFrms二极管流过半波正弦电流的平均值为IFR时,与其发热等效的全周期均方根正向电流IFrms为(1-2)由式(1-1)和(1-2)可得(1-3)m02mFrms21)()sin(21ItdtII=∫=πωωπFRFRFrms57.12III=×=π(4)最大允许非重复浪涌电流IFSM这是二极管所允许的半周期峰值浪涌电流。该值比二极管的额定电流要大得多。实际上它体现了二极管抗短路冲击电流的能力。功率二极管属于功率最大的半导体器件,现在其最大额定电压、电流在6kV、6kA以上。二极管的参数是正确选用二极管的依据。1.2晶闸管晶闸管(Thyristor)就是硅晶体闸流管,普通晶闸管也称为可控硅SCR,普通晶闸管是一种具有开关作用的大功率半导体器件。目前,晶闸管的容量水平已达8kV/6kA。1.2.1晶闸管的结构和工作原理1.晶闸管的结构晶闸管是具有四层PNPN结构、三端引出线(A、K、G)的器件。常见晶闸管的外形有两种:螺栓型和平板型。晶闸管的结构和等效电路如图1-4所示,晶闸管的管芯是P1N1P2N2四层半导体,形成3个PN结J1、J2和J3。2.晶闸管的工作原理IG↑→Ib2↑→IC2(Ib1)↑→IC1↑RNPNPNPAGSKEGIGEAIKIc2Ic1IAV1V2P1AGKN1P2P2N1N2a)b)(1)欲使晶闸管导通需具备两个条件:①应在晶闸管的阳极与阴极之间加上正向电压。②应在晶闸管的门极与阴极之间也加上正向电压和电流。(2)晶闸管一旦导通,门极即失去控制作用,故晶闸管为半控型器件。(3)为使晶闸管关断,必须使其阳极电流减小到一定数值以下,这只有用使阳极电压减小到零或反向的方法来实现。1.2.2晶闸管的特性和主要参数1.晶闸管的特性(1)晶闸管的伏安特性晶闸管的伏安特性是晶闸管阳极与阴极间电压UAK和晶闸管阳极电流IA之间的关系特性。晶闸管的伏安特性(2)晶闸管的门极伏安特性由于实际产品的门极伏安特性分散性很大,常以一条典型的极限高阻门极伏安特性和一条极限低阻门极伏安特性之间的区域来代表所有器件的伏安特性,由门极正向峰值电流IFGM﹑允许的瞬时最大功率PGM和正向峰值电压UFGM划定的区域称为门极伏安特性区域。PG为门极允许的最大平均功率。其中,0ABC0为不可靠触发区,ADEFGCBA为可靠触发区,晶闸管的门极伏安特性(3)晶闸管的开关特性第一段延迟时间td,阳极电流上升到10%所需时间,也对应着从(α1+α2)1到等于1的过程,此时J2结仍为反偏,晶闸管的电流不大。第二段上升时间tr,阳极电流由0.1上升到0.9所需时间,这时靠近门极的局部区域已经导通,相应的J2结已由反偏转为正偏,电流迅速增加。通常定义器件的开通时间ton为延迟时间td与上升时间tr之和。即ton=td+tr(1-4)电源电压反向后,从正向电流降为零起到能重新施加正向电压为止定义为器件的电路换向关断时间toff。反向阻断恢复时间trr与正向阻断恢复时间tgr之和。toff=trr+tgr晶闸管的开关特性2.晶闸管的主要参数(1)额定电压断态重复峰值电压UDRM和反向重复峰值电压URRM中较小的那个数值标作器件型号上的额定电压。通常选用晶闸管时,电压选择应取(2~3)倍的安全裕量。(2)额定电流IT(AV)在环境温度为+40℃和规定冷却条件下,器件在电阻性负载的单相工频正弦半波电路中,管子全导通(导通角170°),在稳定的额定结温时所允许的最大通态平均电流。晶闸管流过正弦半波电流波形如图所示它的通态平均电流IT(AV)和正弦电流最大值Im之间的关系表示为:(1-6)正弦半波电流的有效值为:(1-7)(1-8)式中Kf―为波形系数m0mT(AV)1)(sin21IttdII×=∫=πωωππm02mT21)()sin(21ItdtII==∫πωωπ57.1)T(AVTf==IIK流过晶闸管的电流波形不同,其波形系数也不同,实际应用中,应根据电流有效值相同的原则进行换算,通常选用晶闸管时,电流选择应取(1.5~2)倍的安全裕量。(3)维持电流IH在室温和门极断路时,晶闸管已经处于通态后,从较大的通态电流降至维持通态所必须的最小阳极电流。(4)擎住电流IL晶闸管从断态转换到通态时移去触发信号之后,要器件维持通态所需要的最小阳极电流。对于同一个晶闸管来说,通常擎住电流IL约为维持电流IH的(2~4)倍。(5)门极触发电流IGT在室温且阳极电压为6V直流电压时,使晶闸管从阻断到完全开通所必需的最小门极直流电流。(6)门极触发电压UGT对应于门极触发电流时的门极触发电压。触发电路给门极的电压和电流应适当地大于所规定的UGT和IGT上限,但不应超过其峰值IGFM和UGFM。(7)断态电压临界上升率du/dt在额定结温和门极断路条件下,不导致器件从断态转入通态的最大电压上升率。过大的断态电压上升率会使晶闸管误导通。(8)通态电流临界上升率di/dt在规定条件下,由门极触发晶闸管使其导通时,晶闸管能够承受而不导致损坏的通态电流的最大上升率。在晶闸管开通时,如果电流上升过快,会使门极电流密度过大,从而造成局部过热而使晶闸管损坏。〖例1-1〗两个不同的电流波形(阴影斜线部分)如图所示,分别流经晶闸管,若各波形的最大值Im=100A,试计算各波形下晶闸管的电流平均值IT(AV)1、IT(AV)2