新人教版六年级数学下册第2单元百分数教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二单元:百分数(2)教学课题百分数:折扣教学内容第8页“折扣”、做一做及练习二第1至3题。教学目标知识与技能明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。过程与方法学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。教学重点会解答有关折扣的实际问题。教学难点合理、灵活地选择方法,解答有关折扣的实际问题。教学过程研课记录一、情景导入圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?二、新课讲授1、理解“折扣”的含义。(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?(2)引导提问:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?(3)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?原价乘以70%恰好是标签的售价或现价除以原价大约都是70%。(4)归纳定义。通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。2、解决实际问题。例(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?①导学生分析题意:打八五折怎么理解?是以谁为单位“1”?②先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价③学生独立根据数量关系式,列式解答。④全班交流。根据学生的汇报,板书:例(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?②学生试算,独立列式。③全班交流。根据学生的汇报并板书。3、提高运用在某商店促销活动时,原价200元的商品打九折出售,最后剩下的个,商家再次打八折出售,最后的几商品售价多少元?200×90%=180元180×80%=144元引导学生分析,学生独立完成,再集体交流,让学生明确:“折上折”相当于连续求一个数的百分之几是多少。三、巩固练习1、完成教材第8页“做一做”练习题。2、完成教材第13页练习二第1~3题。作业设计商场在元旦期间进行打折促销活动,某品牌电视机打八折出售,杨老师在活动期间购买了一台原价3850元的电视机,比平时便宜了多少钱?某商店打折促销,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?小红在某文具店买了一套文具,老板给小红打七折的优惠,小红节约了12元,这套文具原价是多少钱?板书设计百分数:折扣几折就是十分之几,也就是百分之几十(1)180×85%=153(元)(2)160-160×90%答:买这辆车用了153元。=160-144=16(元)160×(1-90%)=160×10%=16(元)答:比原价便宜了16钱。教学课题百分数:成数教学内容第9页“成数”、做一做及练习二第4、5题。教学目标知识与技能明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。过程与方法通过成数的计算,进一步掌握解决百分数问题的方法。教学重点成数的理解和计算。教学难点会解决生活中关于成数的实际问题。教学过程研课记录一、情景导入(教材)农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……同学们有留意到类似的新闻报道吗?(学生汇报相关报导)二、新课讲授1、理解成数的含义。成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”(1)刚才我们所说的成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论回答,教师板书)成数分数百分数二成十分之二20%(2)试说说以下成数表示什么?①出口汽车总量比去年增加三成。②北京出游人数比去年增加两成。2、解决实际问题。(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?(2)引导学生分析题目,理解题意:①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式:今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。方法一:350×(1-25%)方法二:350-350×25%=350×75%=350-350×0.25=350×0.75=350-87.5=262.5(万千瓦时)=262.5(万千瓦时)三、练习巩固1、完成教材第9页“做一做”。2、完成练习二第4、5题。巩固练习:作业设计★某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?★★梵净山2013年累计旅游人次是18万人次,2014年累计旅游人次比2013年增加一成五,2014年累计旅游人次是多少万?★★★大坪完小2013年的在校生人数有820人,比2012年在校生人数减少了二成,大坪完小2012年的在校生人数是多少?板书设计百分数:成数二成=(十分之二)=(20%)方法一:350×(1-25%)方法二:350-350×25%=350×75%=350-350×0.25=350×0.75=350-87.5=262.5(万千瓦时)=262.5(万千瓦时)教学反思教学课题百分数:税率教学内容第10页“税率”、做一做及练习二第6、7、8、10题。教学目标知识与技能使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。过程与方法在计算税款的过程中,加深学生对社会现象的理解,提高学生解决问题的能力。教学重点税率的理解和税额的计算。教学难点税额的计算。教学过程研课记录一、情景导入1、口答算式。(1)100的5%是多少?100×0.05=5(2)50吨的10%是多少?50×0.1=5吨(3)1000元的8%是多少?1000×0.08=80元(4)50万元的20%是多少?50×0.2=10万元2、什么是比率?比率,即比值,两数相比所得的值。二、新课讲授1、阅读教材第10页有关纳税的内容。说说:什么是纳税?2、税率的认识。(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。(2)试说说以下税率各表示什么意思。A、商店按营业额的5%缴纳个人所得税。B、某人彩票中奖后,按奖金的20%缴纳个人所得税。3、税款计算。(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?(2)分析题目,理解题意。引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。(3)学生列出算式并计算。相当于“求一个数的百分之几是多少”,用乘法计算。列式:30×5%=30×0.05=1.5(万元)三、巩固练习1、教材第10页“做一做”。2、完成教材第14页练习二第6题第7题第8题第10题。一、计算,能简算的要简算。976512720985%4583845.0++作业设计二、应用题。★某电脑公司4月份的销售收入为800万元。按销售收入的5%缴纳增值税。纳税后该公司4月份的收入是多少万元?★★楚天餐馆8月份在缴纳了5%的营业税后,收入为5.7万元。楚天餐馆8月份的税前收入是多少?★★★小雨妈妈的月工资是4800元,按规定,超出3500元的部分要缴纳5%的个人所得税。小雨妈妈纳税后的月工资是多少元?板书设计百分数:税率应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=1.5(万元)答:10月份应缴纳营业税约1.5万元。教学课题百分数:利率教学内容第11页“利率”、做一做及练习二第9、11题。教学目标知识与技能通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。过程与方法掌握计算利息的方法,会进行简单计算。教学重点掌握利息的计算方法。教学难点正确地计算利息,解决利息计算的实际问题。教学过程研课记录一、情景导入随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。板书课题:利率二、新课讲授1、介绍存款的种类、形式。存款分为活期、整存整取和零存整取等方式。2、阅读教材第11页的内容,理解本金、利息、税后利息和利率的含义。本金:存入银行的钱叫做本金。例题中王奶奶存入的5000元就是本金。利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。3、学会填写存款凭条。课件出示存款凭条,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)4、利息的计算。(1)出示利息的计算公式:利息=本金×利率×时间(2)计算连本带息的方法:连本带息取回的钱=本金+利息(3)学生阅读理解例4,计算后交流汇报,教师板书:5000+5000×3.75%×2=5000+375=5375(元)答:到期后可以取回5375元钱。三、课堂小结什么叫本金?什么叫利息?什么叫利率?如何计算利息?怎么计算取回的总钱数?本金:存入银行的钱叫做本金。例题中王奶奶存入的5000元就是本金。利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。利息=本金×利率×存期取回总钱数=本金+利息作业设计☆妈妈将50000元钱存入银行,整存整取三年,年利率为4.25%。到期后将会得到多少利息?☆☆王庚今年的年终奖金有3万元,他准备全部存入银行,存期为两年,年利率为3.75%。到期后,王庚一共取回多少元钱?☆☆☆爷爷将半年的退休金全部存入银行,存期5年,年利率是4.75%。到期后,取得利息2375元。爷爷存入的退休金是多少钱?板书设计百分数:利率利息=本金×利率×存期取回总钱数=本金+利息5000+5000×3.75%×2=5000+375=5375(元)答:到期后王奶奶可以取回5375元钱。教学课题百分数:整理与复习教学内容第12页例5、“做一做”及练习二第12至15题。教学目标知识与技能熟练地掌握百分数应用题的数量关系,并能解决问题。过程与方法通过归纳整理,是学生熟练地掌握解决百分数问题的方法。教学重点认真审题,用百分数解决实际问题。教学难点用百分数解决实际问题。教学过程研课记录一、复习整理前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。学生交流,汇报,教师随机板书,绘制表格。知识回顾知识点内容摘要解题关键折扣几折表示百分之几十原价×折扣数=现价1、找准单位“1”2、正确理解数量关系成数几成表示百分之几十税率应缴税额=各种收入×税率利率利息=本金×利率×存期取回总钱数=本金+利率二、综合运用课件出示例5。1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。2、利用提问,引导学生思考回答,归纳出解题思路。提问启发:“满100元减50元”是什么意思?引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。归纳整理解题思路:(1)在A商场买,直接用总价乘以50%就能算出实际花费。(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:A商场:230×50%=115(元)B商场:230-2×50=230-100=1

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功