第1页共16页华师大版八年级上册数学期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2B.﹣2C.2D.162.(4分)在实数0,2,,3中,最大的是()A.0B.2C.D.33.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点DB.点B与点DC.点B与点CD.点C与点D4.(4分)“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2B.C.D.5.(4分)下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a66.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.47.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个第2页共16页9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:210.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9=.14.(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=.第3页共16页15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣xn+8÷xn﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.第4页共16页19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得第5页共16页x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.第6页共16页参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2B.﹣2C.2D.16【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.(4分)在实数0,2,,3中,最大的是()A.0B.2C.D.3【解答】解:2<<3,实数0,2,,3中,最大的是3.故选D.3.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点DB.点B与点DC.点B与点CD.点C与点D【解答】解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.4.(4分)“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2B.C.D.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.第7页共16页故选B.5.(4分)下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.6.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.4【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选D.7.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;第8页共16页②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个【解答】解:①0是绝对值最小的有理数,正确;②无限小数是无理数,错误;③数轴上原点两侧的数互为相反数,错误;④a,0,都是单项式,错误;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1,正确;所以正确的有①⑤,共2个;故选A.9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,第9页共16页∴AC=BC,∴△ABC是等腰三角形.故选B.10.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米【解答】解:如图,连接AC.依题意得:∠ABC=90°,AB=4000米,BC=3000米,则由勾股定理,得AC===5000(米).故选:B.11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()第10页共16页A.1组B.2组C.3组D.4组【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9=(x﹣3)2.【解答】解:x2﹣6x+9=(x﹣3)2.14.(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,第11页共16页∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是25n2.【解答】解:∵m2﹣10mn+■是一个二项式的平方,∴■=(5n)2=25n2,故答案为:25n2.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为20cm.【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm第12页共16页三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x