飞行控制系统大作业

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《飞行控制系统》课程实验报告班级0314102学号031410224姓名孙旭东成绩南京航空航天大学2017年4月(一)飞机纵向飞行控制系统的设计与仿真1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。在MATLAB环境下导入数据文件,输入damp(alon),得出结果:EigenvalueDampingFreq.(rad/s)-2.29e+000+4.10e+000i4.88e-0014.69e+000-2.29e+000-4.10e+000i4.88e-0014.69e+000-3.16e-0021.00e+0003.16e-002-7.30e-003+3.35e-002i2.13e-0013.42e-002-7.30e-003-3.35e-002i2.13e-0013.42e-002长周期的根为-7.30e-003+3.35e-002i和-7.30e-003-3.35e-002i阻尼为2.13e-001自然频率为3.42e-002(rad/s)短周期的根为-2.29e+000+4.10e+000i和-2.29e+000-4.10e+000i阻尼为4.88e-001自然频率为4.69e+000(rad/s)2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。sys=ss(alon,blon,clon,dlon)[y,t]=step(sys,500)subplot(221)plot(t,y(:,1,1))xlabel('t(s)')ylabel('\Deltau(m/s)')subplot(222)plot(t,y(:,1,2))xlabel('t(s)')ylabel('\Deltau(m/s)')subplot(223)plot(t,y(:,2,1))xlabel('t(s)')ylabel('\Delta\alpha(deg)')subplot(224)plot(t,y(:,2,2))xlabel('t(s)')ylabel('\Delta\alpha(deg)')0200400600-10-505t(s)q(deg/s)0200400600-4-2024t(s)q(deg/s)0200400600-150-100-50050t(s)(deg)0200400600-50050100t(s)(deg)0200400600-2000200400t(s)u(m/s)0200400600-6-4-20t(s)(deg)0200400600-2000200400t(s)u(m/s)0200400600-2024t(s)(deg)subplot(221)plot(t,y(:,3,1))xlabel('t(s)')ylabel('\Deltaq(deg/s)')subplot(222)plot(t,y(:,3,2))xlabel('t(s)')ylabel('\Deltaq(deg/s)')subplot(223)plot(t,y(:,4,1))xlabel('t(s)')ylabel('\Delta\theta(deg)')subplot(224)plot(t,y(:,4,2))xlabel('t(s)')ylabel('\Delta\theta(deg)')subplot(121)plot(t,y(:,5,1))xlabel('t(s)')ylabel('\Deltah(m)')subplot(122)plot(t,y(:,5,2))xlabel('t(s)')ylabel('\Deltah(m)')0200400600-0.500.511.522.5x104t(s)h(m)0200400600-2.5-2-1.5-1-0.50x104t(s)h(m)以上各图为升降舵及油门单位阶跃输入下的飞机自然特性行仿真,左边一列为升降舵的阶跃输入,右边一列为油门的阶跃输入。3、采用短周期简化方法,求出传递函数()eqGs。采用根轨迹方法设计飞机的俯仰角控制系统,并进行仿真。输入命令:a1=alon((2:3),(2:3))b1=blon((2:3),:)c1=clon((2:3),(2:3))d1=dlon((2:3),:)[n,d]=ss2tf(a1,b1,c1,d1,1)g1=tf(n(2,:),d)得到传递函数()eqGs为:-34.17s-82.55-----------------------s^2+4.579s+22.01根轨迹设计:输入命令:g1=tf(n(2,:),d)g2=tf([-10],[110])g3=series(g1,g2)sisotool(g3)10-1100101102103-180-135-90-45045P.M.:107degFreq:5.6rad/secFrequency(rad/sec)Phase(deg)-80-60-40-200G.M.:InfFreq:InfStableloopOpen-LoopBodeEditorforOpenLoop1(OL1)Magnitude(dB)-10-8-6-4-20-25-20-15-10-50510152025RootLocusEditorforOpenLoop1(OL1)RealAxisImagAxis选取阻尼比为0.55时,根轨迹增益为Kq=0.17310-1100101102103-180-135-90-45045P.M.:95.4degFreq:6.29rad/secFrequency(rad/sec)Phase(deg)-80-60-40-20020G.M.:InfFreq:InfStableloopOpen-LoopBodeEditorforOpenLoop1(OL1)Magnitude(dB)-10-8-6-4-20-25-20-15-10-50510152025RootLocusEditorforOpenLoop1(OL1)RealAxisImagAxisg4=feedback(g3,0.173)g5=tf([1],[10])g6=series(g4,g5)sisotool(g6)10-1100101102103-270-225-180-135-90-45P.M.:82.9degFreq:3.18rad/secFrequency(rad/sec)Phase(deg)-120-100-80-60-40-2002040G.M.:10.2dBFreq:10rad/secStableloopOpen-LoopBodeEditorforOpenLoop1(OL1)Magnitude(dB)-35-30-25-20-15-10-50510-25-20-15-10-50510152025RootLocusEditorforOpenLoop1(OL1)RealAxisImagAxis同样,可得Kth=1在Simulink中搭建系统仿真模型:num(s)den(s)TransferFcn1-10s+10TransferFcnx1ToWorkspace1tToWorkspaceStepScope1sIntegrator-K-Gain21GainClock进行仿真:01234567891000.20.40.60.81t(s)(deg)01234567891000.20.40.60.811.21.4ut(s)4、基于长周期简化方法,求出传递函数()TuGs,设计飞机的速度控制系统,并进行仿真。输入命令:a1=alon([1,4],[1,4])b1=blon([1,4],:)c1=clon([1,4],[1,4])d1=dlon([1,4],:)[n,d]=ss2tf(a1,b1,c1,d1,2);g1=tf(n(1,:),d)得到传递函数为:7.971s---------------s^2+0.04847s在Simulink中搭建系统模型:7.971ss+0.04847s2TransferFcn110s+10TransferFcnx1ToWorkspace1tToWorkspaceStepScopePIDPIDControllerClock使用经验试凑法得到PID控制器参数:Kp=0.9Ki=0.2Kd=0仿真结果如下:5、基于纵向线性模型(状态方程),分别对速度控制与俯仰角控制进行仿真。在Simulink中搭建仿真模型:-10s+10TransferFcn110s+10TransferFcnxx2ToWorkspace7xx1ToWorkspace6x4ToWorkspace5x3ToWorkspace4x2ToWorkspace3x1ToWorkspace2x5ToWorkspace1tToWorkspaceStepx'=Ax+Buy=Cx+DuState-SpacePIDPIDController-K-Gain11GainClock先在速度通道加阶跃信号,输入命令:subplot(221)plot(t,x1)xlabel('t(s)')ylabel('\Deltau(m/s)')subplot(222)plot(t,x2)xlabel('t(s)')ylabel('\Delta\alpha(deg)')subplot(223)plot(t,x3)xlabel('t(s)')ylabel('\Deltaq(deg/s)')subplot(224)plot(t,x4)xlabel('t(s)')ylabel('\Delta\theta(deg)')和plot(t,x5)xlabel('t(s)')ylabel('\Deltah(m)')得到以下曲线:0246810-1.5-1-0.50t(s)h(m)0510-0.015-0.01-0.0050t(s)u(m/s)0510-0.500.51t(s)(deg)0510-10123t(s)q(deg/s)051000.511.5t(s)(deg)051000.511.5t(s)u(m/s)0510-0.4-0.200.20.4t(s)(deg)0510-4-2024t(s)q(deg/s)0510-0.200.20.40.6t(s)(deg)再在俯仰角通道加阶跃信号,重复以上命令,得到如下曲线:0246810-30-20-10010t(s)h(m)(二)飞机侧向滚转角控制系统设计1、求出侧向运动方程的特征根,及对应的模态,求出荷兰滚模态的阻尼及自然频率。在MATLAB环境下导入数据文件,输入damp(alon),得出结果:EigenvalueDampingFreq.(rad/s)0.00e+000-1.00e+0000.00e+000-6.89e+0001.00e+0006.89e+000-1.55e-0021.00e+0001.55e-002-1.02e+000+5.08e+000i1.97e-0015.19e+000-1.02e+000-5.08e+000i1.97e-0015.19e+000侧向运动方程的特征根为:0.00e+000(航向随遇平衡模态)-1.55e-002(螺旋模态)-1.02e-001+5.08e+000i,-1.02e-001–5.08e+000i(荷兰滚模态)-6.89e+000(侧向滚转收敛模态)荷兰滚模态的阻尼为:1.97e-001自然频率为:5.19e+000(rad/s)2、对副翼与方向舵单位阶跃输入下的自然特性进行仿真sys=ss(alat,blat,clat,dlat)[y,t]=step(sys,400)subplot(221)plot(t,y(:,1,1))xlabel('t(s)')ylabel('\Delta\beta(deg)')subplot(222)plot(t,y(:,1,2))xlabel('t(s)')ylabel('\Delta\beta(deg)')subplot(223)plot(t,y(:,2,1))xlabel('t(s

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功